

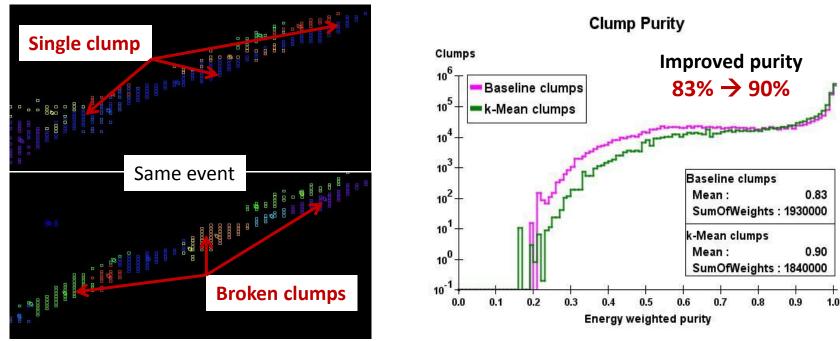
PFA status

R. Cassel, M. Charles, <u>G. Halladjian</u>, <u>R. Zaidan</u>, U. Mallik

PFA: the steps

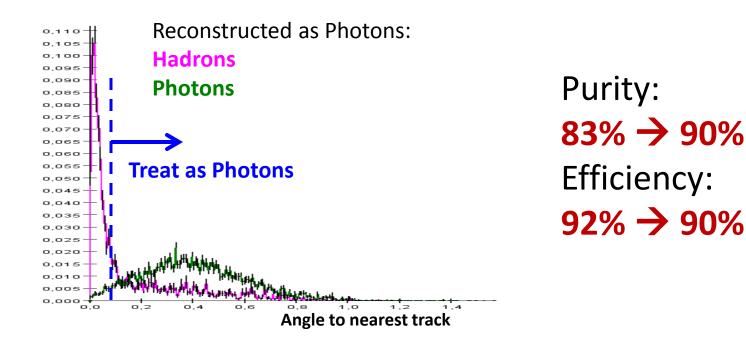
- Setup:
 - Photon finding
 - Electron finding
 - Muon finding
 - Pre-shower MIP finding
 - DTree clustering:
 - Uses only hits not used so far.
 - Sub-structure finding:
 - MIPs, Clumps, blocks and leftovers
 - Track-seed matching:
 - Uses initial MIP finding
 - Attempt to match unmatched tracks to sequentially to MIPs, Clumps and blocks, leftover hits then photons.
 - Photon veto:
 - A photon is considered as a hadron if it is within 3 degrees from a track.

PFA: the steps


- Shower building:
 - Link scoring:
 - Based on a likelihood
 - Categorized: Clumps/Mips, Ecal/Hcal
 - Cluster sharing:
 - Energy of the leftover hits is shared among linkable clusters.
 - Existing shower building:
 - Uses a cone algorithm along main shower axis.
 - Uses E/P check to prevent unphysical mistakes
 - Build showers for tracks one at a time starting from low momentum
 - Results are shown using this version.
 - Particle making:
 - Construct 4-momentums for all kind of particles.

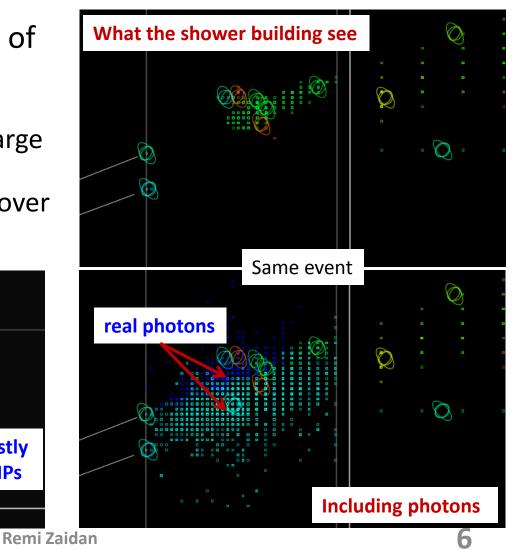
- Shower building under development:
 - First iteration: build high purity skeletons
 - Second iteration: build primary and secondary neutral showers
 - Third iteration: fix mistakes using the total event energy information

Sub-cluster finding


- Improved on Clump finding:
 - Implemented a new clump finding algorithm based on the kmean clustering algorithm:
 - Clusters are seeded with local density maxima.
 - Hits are assigned to seeds based on proximity.

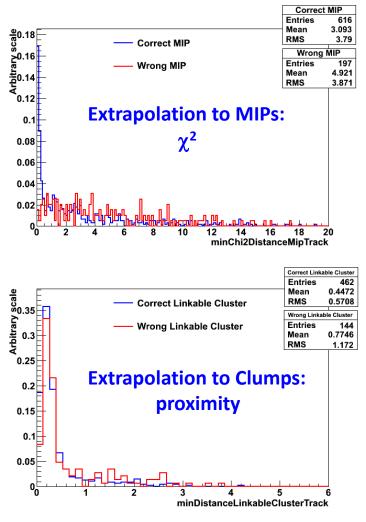
Photon veto

- Improved on photon purity:
 - Treat a reconstructed photon cluster as a hadronic clump if there is a track within 3 degrees of the photon.
 - We still have a 10% inefficiency and 10% contamination in the photon energy.

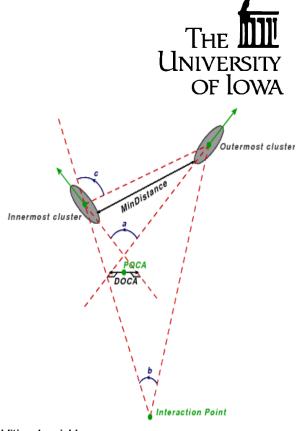


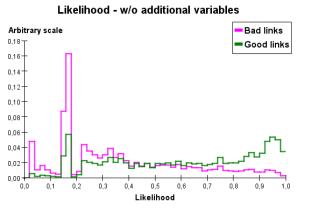
Track-seed matching

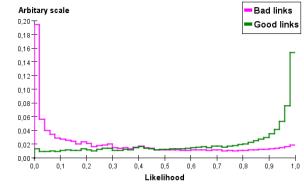
- Identified two categories of problems in the seeds assigned to tracks:
 - Short seeds masked by large photons.
 - Seeds that consist of leftover hits halos.


Seeds Leftover hits halo: Can link to anything within a large region 9/16/2011 Remi Z

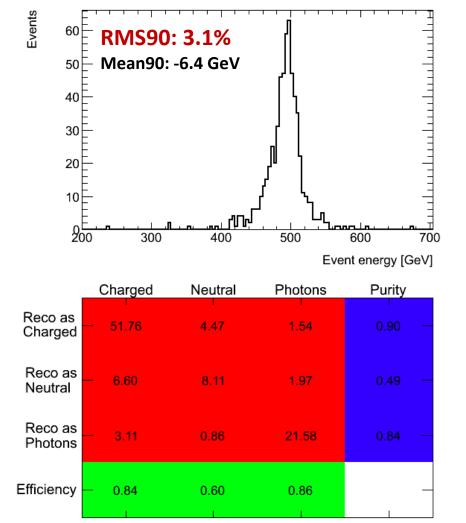
Fix by extrapolation




- Extrapolate the track into the calorimeter and try to match to a MIP:
 - Matching criteria is a chi2 between the MIP and the track extrapolation taking the size of the cells as position uncertainty.
 - About 25% of the cases a match is found.
 - About 95% of the found MIPs actually belong to the track.
- Then try to match to a clump:
 - Extrapolate the track and pick-up the first clump it finds within a certain distance.
 - The distance is between the track extrapolation to a given layer and the closest hit of the clump on that layer.
 - Limit distance calculation to the first 3 layers of the clump.
 - About 75% of the found clumps actually belong to the track.
- Overall, about 80% of the found new seeds actually belong to the track.


Link scoring

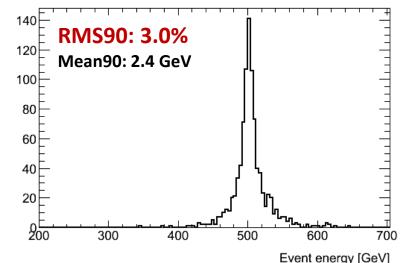
- Improved on likelihood for link scoring:
 - Added new grometrical variables
 - Use separate likelihood for different subdetectors
 - Use the correct jet energy for likelihood training
 - Train the likelihood not to link indirect links:
 - If A can link to B and B can link to C, then A should not necessarily link to C.

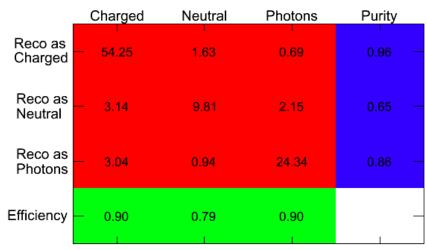


PFA resolution: No cheating

- Cheating with:
- Not cheating with:
 - Photon finding
 - Electron finding
 - Muon finding
 - Pre-shower MIP finding
 - DTree clustering
 - Sub-structure finding
 - Photon veto
 - Track-seed matching
 - Sharing of the leftovers
 - Link scoring
 - Charged shower building
 - Neutral shower building
 - Particle making
- Not affected by:

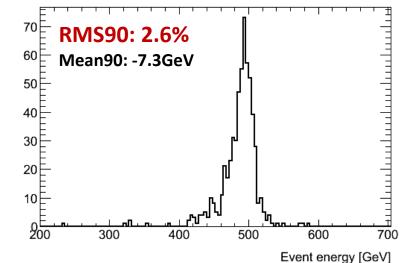
The IIII University


OF IOWA


Perfect PFA: Cheat on shower building

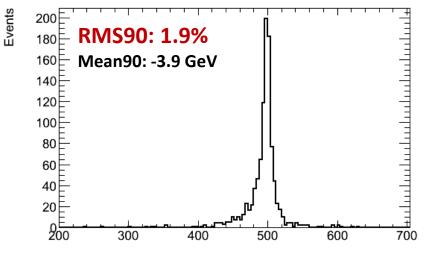
Events

- Cheating with:
 - Charged shower building
 - Neutral shower building
- Not cheating with:
 - Photon finding
 - Electron finding
 - Muon finding
 - DTree clustering
 - Sub-structure finding
 - Photon veto
 - Sharing of the leftovers
 - Particle making
- Not affected by:
 - Pre-shower MIP finding
 - Track-seed matching
 - Link scoring



Perfect PFA: Cheat on photons

Events


- Cheating with:
 - Photon finding
- Not cheating with:
 - Electron finding
 - Muon finding
 - Pre-shower MIP finding
 - DTree clustering
 - Sub-structure finding
 - Photon veto
 - Sharing of the leftovers
 - Particle making
 - Charged shower building
 - Neutral shower building
- Not affected by:
 - Track-seed matching
 - Link scoring

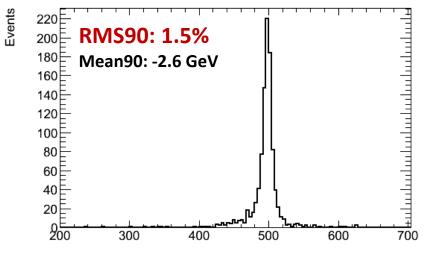
	Charged	Neutral	Photons	Purity
Reco as Charged	- 52.59	4.41	0.44	0.92 —
Reco as Neutral	— 6.71	8.83	0.11	0.56 —
Reco as Photons	— 1.76	0.00	25.16	0.93 —
Efficiency	- 0.86	0.67	0.98	_

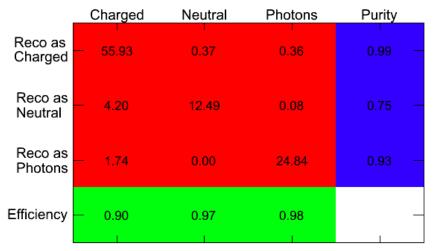
Perfect PFA: Cheat on photons and shower building

- Cheating with:
 - Photon finding
 - Charged shower building
 - Neutral shower building
- Not cheating with:
 - Electron finding
 - Muon finding
 - DTree clustering
 - Sub-structure finding
 - Photon veto
 - Sharing of the leftovers
 - Particle making
- Not affected by:
 - Pre-shower MIP finding
 - Track-seed matching
 - Link scoring



	Charged	Neutral	Photons	Purity
Reco as Charged	- 54.36	1.69	0.37	0.96 —
Reco as Neutral	— 5.19	11.01	0.08	0.68 —
Reco as Photons	— 1.78	0.00	25.53	0.93 —
Efficiency	- 0.89	0.87	0.98	


UNIVERSITY


OF IOWA

Perfect PFA: Cheat on photons, DTree and shower building

- Photon finding
- DTree clustering
- Charged shower building
- Neutral shower building
- Not cheating with:
 - Muon finding
 - Electron finding
 - Pre-shower MIP finding
 - Sub-structure finding
 - Photon veto
 - Sharing of the leftovers
 - Particle making
- Not affected by:
 - Pre-shower MIP finding
 - Track-seed matching
 - Link scoring

9/16/2011

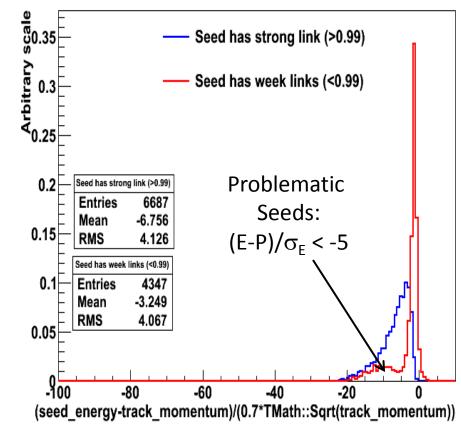
Remi Zaidan

University

OF IOWA

Conclusion

- Current status:
 - Limited by photon ID
 - 3.1% \rightarrow 2.6% with perfect photons
 - 3.1% \rightarrow 3.0% with perfect shower building
- Shower building is being re-written to scale better at higher energies:
 - Large progress has already been made in this area.
 - Charged shower truncs (first iteration) ... done
 - Neutral (primary and secondary) showers (second iteration) ... done
 - Need to implement a third iteration using a global event energy constraint ... in progress
 - Will not be ready for spain workshop.

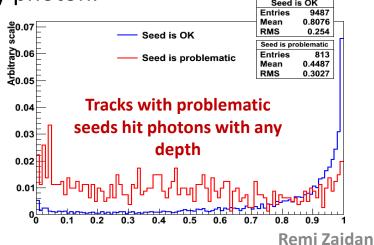


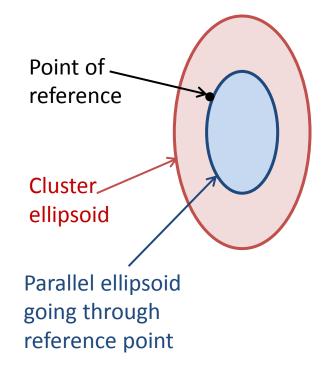
Back-up

Track-seed matching

- Identifying problematic seeds:
- Some seeds don't have a chance to propagate into a shower because they don't link to anything with sufficiently high score:
 - Most of these seeds correspond to low momentum tracks and the seed itself satisfies the E/P balance
 - Some don't satisfy the E/P balance: they should link to something but they don't!

Track/photon proximity


• Shallownes of a point in a photon:


shallowness = $\frac{\text{Energy IN}}{\text{Energy IN} + \text{Energy OUT}}$

• Shallowness of a track in a photon:

9/16/2011

- Extrapolate the tracks at each layer of the photon, and compute the shallowness of the intercept point in the photon.
- Compute the minimal shallowness over all photon layers.
- Compute the minimal shallowness of the track to any photon.



Properties of the problematic seeds

- 8% of matched tracks have problematic seeds:
 - On average 1/3 of events have one or more problematic seed.
- They have high momentum:
 - 60 GeV on average instead of 20 GeV for all tracks.
- They have low number of hits:
 - 90% of them have less than 4 hits.
- There is a big photon nearby

