

Obtaining the Dual Readout Correction

- Introduction
 - Definitions
 - Motivation
 - The steps involved
- Calculate k_{s} , k_{c}
- Obtain the dual readout correction function f_{corr}(C/S)
- Obtain energy response and energy resolution for single particles
- Where to find and how to run the scripts

Hans Wenzel

Sept. 30th 2011

Definitions

- E_{in}: energy of incident particle.
- E_{dep}: represents measurement of deposited Energy in Calorimeter (by ionizing particles) e.g. represented by
 - deposited energy as reported by Geant 4.
 - number of scintillation photons.

Assuming electrons deposit all energy in the calorimeter: $E_{in}(e) = k_s \times E_{dep}(e) = S$

 E_{Ceren}: represents measurement of Energy deposited in form of Cerenkov radiation e.g. represented by number of Cerenkov photons. For electrons E_{ceren} is assumed (we check it) to be directly proportional to E_{dep} and E_{in}:

$$E_{in}(e) = k_{c} \times E_{Ceren}(e) = C$$

• For electrons:

$$C/S = 1$$

• Dual read out correction: $E_{in} = S / f_{corr}(C/S)$

Motivation

- Corrections k_s , k_c , f_{corr} (C/S) depend on:
 - physics list
 - Detector configuration
 - Selections cuts (e.g. timing, threshold, clustering, etc.....)
 - What quantity we are measuring
 - •
- Therefore k_s, k_c, f_{corr}(C/S) need to be estimated for each configuration --> need to automate the procedure (especially with the Grid spitting out results fast :(
- Automation is fine but keep the raw distributions:
 - Leakage --> leads to over corrctions (not handled yet)
 - Effects like non-continous physics list can have strange effects (QGSP_BERT is a good example)

Steps involved

- Use mono-energetic electrons of various energies to determine k_s, k_c
- Use mono energetic pions (and electrons) to obtain $f_{corr}(C/S)$.
- Use mono energetic pions to check the result.
 - Apply Dual readout correction
 - Check energy response and energy resolution.

DRCal detector used in this exercise

Crystal size in x,y,y: 5 cm Nr. of cells in x,y,z: 40 Crystal Material : G4_BGO Crystal Density : 7.13 [g/cm3] Crystal interaction length: 22.6937 [cm] Crystal radiation length: 1.11801 [cm] Crystal total length (z,y,z): 200 [cm] # interaction length (x,y,z): 8.81301

(ignore material of silicon photo dets. total # of IA length: 0.0524555)

Physics list: (the infamous) QGSP_BERT No thresholds, no clustering

Sept. 30th 2011

Hans Wenzel

Calibrated Energy response for single pions

Sept.

Hans Wenzel

Sept. 30th 2011

Hans Wenzel

8

30th

Sept.

2011

1 C/S

Dr corrected energy response for single pions.

pion total Energy deposition (dr corrected) (Ein 5.000000 GeV)

on Accele

Sept.

30th

Sept.

2011

DR corrected energy resolution

Hans Wenzel

Where to find and how to run the scripts

Everything is in CVS (Work in Progress) DRCalRoot/Event/Calibration.C

To run it in ROOT type:

.L libEvent.so .L Calibration.C init("infiles.txt"); CalE(); Tbrowser b;