Study of the Higgs Selfcoupling at the ILC

Junping Tian (KEK) Physics and Software Meeting Oct. 28, 2011

preliminary results of cheated jet clustering (limit)

strategy

Invariant mass of Z

- all PFOs are clustered with SatoruJetFinderWithCheatProcessor_6Jet
- the jets with the smallest and second smallest number of PFOs are assigned as the two charged leptons
- the other four jets are paired using the realistic pairing algorithm

Invariant mass of Higgs

two Higgs are combined

comparison with dominant backgrounds

all with the cheated jet clustering llHH mode: (ZZH and ZZZ)

perfect separation!

comparison with dominant backgrounds

all with real jet clustering llHH mode: (ZZH and ZZZ)

much worse!

performance of the neural-net

number of PFOs in a charged lepton jet (from cheated jet clustering) eeHH

6

number of PFOs in a charged lepton jet

(from cheated jet clustering)

μμΗΗ

7

look into the charged lepton jet

(from cheated jet clustering)

energy of the neural PFOs

angle between the neural PFO and the charged lepton

8

over 90% of the neural PFOs are inside the cone $\cos \theta_{\rm Cone} = 0.998$

hint for the improvement of isolated lepton selection (could improve the mass resolutions of both Z and H)

apply to the real analysis

(by combining the radiate photons to charged leptons)

 $\cos \theta_{\rm Cone} = 0.998$

apply to the real analysis

(by combining the radiate photons to charged leptons)

 $\cos \theta_{\rm Cone} = 0.998$

backup

muon mode

muon mode

apply to the real analysis

(by combining the radiate photons to charged leptons)

 $\cos \theta_{\rm Cone} = 0.998$

apply to the real analysis

(by combining the radiate photons to charged leptons)

 $\cos \theta_{\rm Cone} = 0.998$

muon mode

comparison with dominant backgrounds

llHH mode: (ZZH)

single Higgs mass

smaller one

puzzle

