

TDR will have:

- Description of the design, including siting
- Updates / choices made on the basis of R&D
- Cost estimate, including industrialization
- 1 TeV upgrade
- Explanation of EDMS repository
- Implementation Plan / Governance scheme
- Outline to be discussed ALCPG11

Cost estimate, including industrialization

- (RDR 3.7.4): Cavities ~ 40% CM, in turn 30% of total → 12% of the total
 - To be cross-checked; too high....
- SB2009:

TLCC (% of RDR)	KCS	DRFS
1 Single tunnel	2	1.5
2 Gradient spread	1.5	1.5
3 reduced beam	6	8.4
4 positron	0	0
TOTAL TLCC	6.5	8.4
Central Complex	1.6	1.6
Oxford TOTAL	12.3	12.6

TDR Technical Baseline Reviews

Dates and venues:

Baseline Technical Reviews		
Area / Group	When	Where
DR	7-8 July, 2011	INFN
RTML	TBD (Oct 2011?)	Fermilab
BDS	27-28 Oct 2011	DESY
Sources	12-13 Dec 2011	ANL
SCRF / Main linac	Winter 2011 / 2012	KEK
integration		
CFS	Winter 2011 / 2012	Fermilab / Cern

Physics and Detector to be represented

ALCPG Eugene, 23.03.2011 Nick Walker

3

TDR Prep Review Meeting Goals:

- Review the <u>TDP R & D</u> and summarize progress and plans.
- Review the <u>system design</u>
 - including a change control procedure so that key design changes can be discussed openly
 - The updated baseline will be used for the TDR plan and cost estimate.
- Review the <u>system cost</u>
 - For SCRF and CFS, additional meetings, parallel sessions etc are also required.
- Review <u>system interface criteria</u>;
 - for example, requirements to CFS
- Review <u>supporting documents</u> for inclusion in the EDMS
- Discuss TDR preparation plans.
 - Upon the completion of the review, we should be able to publish a plan for producing that part of the TDR; resources, milestones, etc
- The review to be accessible to the community

TDR Preparation Review Meeting Scheme

- each meeting to include document discussion and sign-off
 - drawings, specifications and spreadsheets with parameters and costs
 - relatively small, compared to BAW
 - each key participant can understand their immediate tasks and responsibilities.
- the meeting to also include more general summary wrap-up talks, as needed.

TDR Preparation Review Meeting Scheme (2)

- meet with TAG's, group by group.
- 5 to 6 meetings in the next 12 to 15 months.
- start with the Accelerator Systems
 - Source
 - DR
 - BDS
- Work on the AS systems:
 - scope is understood,
 - but there will be questions and changes
- remaining resources are directed toward completion of specific tests –
 - CesrTA, ATF2 and source technology development.

Planning for the TDP 2

	2010	2011	2012
Risk Mitigating R&D		1	
Re-Baseline (CC)		i	
AD&I (TLCC)			
AD&I (TBR*)			
TeV upgrade study			
Update VALUE estimate			
Tech. Risk Assessment			
PIP			
Write TDR report(s)			
*T '		You are here	<u>.</u> !

* Technical Baseline Reviews

TDP Key Focus (beyond R&D)

SCRF Cost

- mass production models
- global distribution

Highest Priority (new estimate)

CFS design & cost

- Design update
- Value engineering

High Priority (updated estimate)

Baseline Design

- Final design decisions
- Documentation
- Cost estimate

RDR update Documentation (scaled estimate)

CFS requirements critical input

Technical Baseline Reviews

The next "thing" after TLCC

Similar format to TLCC BAW but reduced scope

- next-level of design decisions
- PM (not Director) driven

two-day focus workshops

- face-to-face for key (mandatory) participants, but
- open meetings to all who wish to attend
- Webex available
- Written detailed summaries to be provided

Open and transparent

Schedule constraints and concerns:

- Each review should last two days
- Comprehensive costing for only SCRF and CFS TAG's
- SCRF industrialization study to be launched this month; expected ~ 1 year
- CFS contracts and HLRF (DRFS) costing work is expected to be ready in late 2011.
- Limit the total number of reviews to six, to take place between mid 2011 and early 2012.
- Try to achieve regional balance and etc

TDR Preparation Review Meeting Scheme - participation

- CFS representatives to participate in every one of the AS meetings.
- costing engineers also.
- (SCRF group leaders are not required to participate)
- Physics and Detector representatives required for MDI-related meetings; welcome at others
- SCRF and CFS meetings toward the end of 2011 or in early 2012
 - consistent with our schedule
- reasonable and necessary set of meetings.

11

Topics for System Design Review

- Review the <u>TDP R & D</u> and summarize progress and plans.
- Review the <u>system design</u>
 - including a change control procedure so that key design changes can be discussed openly

Example topics:

- 1. Cavity pairing Power Distribution System.
- 2. Marx modulator
- 3. RDR HLRF fallback
- 4. RTML RF design and civil design.
- 5. Tunnel diameters
- 6. Power dissipation in the tunnel
- 7. DRFS components
- 8. Optimization of Positron production parameters:
 - 1. undulator length and field;
 - 2. polarization collimator space