Strip Splitting Algorithm

04 / Nov. 2011 Physics and Software meeting
Shinshu university k. kotera

Resent status of Strip Splitting Algorithm

- I have showed StripScECAL(45x5mm) performance for 45 GeV Jet at ILD software meeting May 2011 in Paris: $\sigma E / E<30 \%$ (a milestone)
- Remaining problems:
- End-cap $>$ JER degrades on End-caps and near there.
- Higher energy Jet > Not yet with current PFA conditions
- more multi-jet
- performance for physics analyses
- To release SSA processor as Marlin framework <I’ve had a svn account in MarlinReco, and just started preparing to check:
httes://svnsrv.desy.de/desy/marlinreco/MarlinReco/trunk/hybridEcalSplitter

Length dependence of JER 45 GeV after tuned by author of PandoraPFA

Scintillator length
(mm)
-with default parameters for PandraPFANew
(calibrations have been done for ScECA)

Length dependence of JER 45 GeV after tuned by author of PandoraPFA

Scintillator length
-PandoraPFA parameters for ScECAL45x5mm² were Tuned by Mark Thomson.
-Sc45x5mm²StripECAL achieves to have JER/ \sqrt{E} less than 30\%.

Resent status of Strip Splitting Algorithm

- I have showed StripScECAL(45x5mm) performance for 45 GeV Jet at ILD software meeting May 2011 in Paris:

$$
\sigma E / E<30 \% \text { (a milestone) }
$$

- Remaining problems:
- End-cap $>$ JER degrades on End-caps and near there.
- Higher energy Jet > Not yet with current PFA conditions
- more multi-jet
- performance for physics analyses
- To release SSA processor as Marlin framework /I’ve had a svn account in MarlinReco, and just started preparing to check:
https://svnsrv.desy.de/desy/marlinreco/MarlinReco/trunk/hybridEcalSplitter

Thrust angle dependence of 100 GeV JER

Around end-caps JER degrades. I will see what happens on boundary

Resent status of Strip Splitting Algorithm

- I have showed StripScECAL(45x5mm) performance for 45 GeV Jet at ILD software meeting May 2011 in Paris: $\sigma E / E<30 \%$ (a milestone)
- Remaining problems:
- End-cap $>$ JER degrades on End-caps and near there.
- Higher energy Jet > Not yet with current PFA conditions
- more multi-jet
- performance for physics analyses
- To release SSA processor as Marlin framework <I've had a svn account in MarlinReco, and just started preparing to check:
https://svnsrv.desy.de/desy/marlinreco/MarlinReco/trunk/hybridEcalSplitter

Mark's tuning $100 \mathrm{GeV}, 180 \mathrm{GeV}$

Mark's tune works only for 45 GeV Jet events!
We need to see what happens event by event and I need to learn how PandoraPFA works.

Resent status of Strip Splitting Algorithm

- I have showed StripScECAL(45x5mm) performance for 45 GeV Jet at ILD software meeting May 2011 in Paris: $\sigma E / E<30 \%$ (a milestone)
- Remaining problems:
- End-cap $>$ JER degrades on End-caps and near there.
- Higher energy Jet > Not yet with current PFA conditions
- more multi-jet
- performance for physics analyses
- To release SSA processor as Marlin framework ll've had a svn account in MarlinReco, and just started preparing to check:
https://svnsrv.desy.de/desy/marlinreco/MarlinReco/trunk/hybridEcalSplitter

back up

Strip-splitting Algorithm

1. Assume that n -th is an z-layer (fine segmentation in z direction), while $\mathrm{n} \pm 1$ layers are x -layers (fine segmentation in x direction).
2. Split each strip in n-th layer into virtual square cells.
3. Energy deposit in n-th layer
4. is distributed in virtual square cells according to the energy deposits in adjacent ($n-1$) th and ($n+1$)th layers.
5. The position and energy of virtual square cells are fed into PandoraPFA.

Strip-splitting method

1. Assume that n-th is an z-layer (fine segmentation in z direction), while $\mathrm{n} \pm 1$ layers are x -layers (fine segmentation in x direction).
2. Split each strip in n-th layer into virtual square cells.
3. Energy deposit in n-th layer
4. is distributed in virtual square cells according to the energy deposits in adjacent ($n-1$) th and ($n+1$)th layers.
5. The position and energy of virtual square cells are fed into PandoraPFA.

Strip-splitting method

1. Assume that n-th is an z-layer (fine segmentation in z direction), while $\mathrm{n} \pm 1$ layers are x -layers (fine segmentation in x direction).
2. Split each strip in n-th layer into virtual square cells.
3. Energy deposit in n-th layer
4. is distributed in virtual square cells according to the energy deposits in adjacent ($n-1$) th and ($n+1$)th layers.
5. The position and energy of virtual square cells are fed into PandoraPFA.

Strip-splitting method

1. Assume that n-th is an z-layer (fine segmentation in z direction), while $\mathrm{n} \pm 1$ layers are x -layers (fine segmentation in x direction).
2. Split each strip in n-th layer into virtual square cells.
3. Energy deposit in n-th layer
4. is distributed in virtual square cells according to the energy deposits in adjacent ($n-1$) th and ($n+1$)th layers.
5. The position and energy of virtual square cells are fed into PandoraPFA.

Strip-splitting method

1. Assume that n-th is an z-layer (fine segmentation in z direction), while $\mathrm{n} \pm 1$ layers are x -layers (fine segmentation in x direction).
2. Split each strip in n-th layer into virtual square cells.
3. Energy deposit in n-th layer
4. is distributed in virtual square cells according to the energy deposits in adjacent ($n-1$) th and ($n+1$)th layers.
5. The position and energy of virtual square cells are fed into PandoraPFA.

10GeV photon typical event

 Energy summed up to z direction (y-x plane)
Before Strip-Splitting
 After Strip-Splitting

Nice cluster can be seen after Strip-splitting.

Strip Splitting Algorithm

100 GeV Jet x 2: easy case

Before:SSA

Recon.w/ SSA + PandoraPFA

A small shower looks a track

Strip Splitting Algorithm

100 GeV Jet x 2: more difficult case

Before:SSA

Recon.w/ SSA + PandoraPFA

Fine layer
Longitudinal layer

Interval of scinti. in longitudinal layers is 45 mm , while fine segmented layers: 5 mm (width of scinti.)

Strip Splitting Algorithm

100 GeV Jet x 2: more difficult case

Before:SSA

Recon.w/ SSA + PandoraPFA

Fine layer

(*limit of colors makes π^{+}and r in the same, but they are separated)

Length dependence of JER 45 GeV with realistic generator

-Realistic simulation
(generator:Gabriel)
-intrinsic strip shape
-not needed to merge square cells in generator(no doubt to accidentally cheat square information)
-MPPC dead volume
-reflector dead volume
-PCB boad
-copper radiator ...
-StripSplittiong method works well
-difference of JER between SiECAL and ScECAL remains

Jet energy resolution vs. jet energy

Difference of JER between ScECAL and SIEAL exists

The behavior of ScECAL is similar to that of SiECAL in LOI

There is a difference of layer structure between ScECAL and SiECAL: SiECAL has fine layers in 1 st - 20th layers

Similar layer structure for ScECAL was tested $>$ no effect
need fine tuning for PFA

Energy resolution of 10 GeV photon

- One photon energy resolution is similar between default analysis and M.Thomson's. This is a starting point
- RMS90
0.488 ± 0.06 (Default) 0.479 ± 0.06 (Mark's)
- Because energy resolution of one photon events does not require separation capability, Similar energy resolution is not surprising thing

Energy resolution of 10 GeV photon

- One photon energy resolution is similar between default analysis and M.Thomson's. This is a starting point
-RMS90
0.488 ± 0.06 (Default) 0.479 ± 0.06 (Mark's)
- Because energy resolution of one photon events does not require separation capability, Similar energy resolution is not surprising thing
- SiECAL also has almost similar energy resolution
- RMS90
0.471 ± 0.05 (SiECAL)

Radius of 10 GeV photon in ECAL

π^{0} mass and π^{0} recon.efficiency vs. π^{0} energy

- Reconstructed π^{0} mass using strip-Splitting method looks reasonable.
- Efficiency degrades with higher energy.
- Sc5x5squareECAL has reasonable efficiency $>$ This does not explain the difference of JER between SiECAL and ScECAL
- Need tune photon separation for strip-Splitting method.

π^{0} mass and π^{0} recon.efficiency vs. π^{0} energy

- Reconstructed π^{0} mass using strip-Splitting method looks reasonable.
- Efficiency degrades with higher energy.
- Sc5x5squareECAL has reasonable efficiency $>$ This does not explain the difference of JER between SiECAL and ScECAL
- Need tune photon separation for strip-Splitting method.
π^{0} mass and π^{0} recon.efficiency vs. π^{0} energy

plitting method looks
y.
ficiency $>$ This does not , SIECAL and ScECAL
- Need tune photon separation for strip-Splitting method.

π^{0} mass and π^{0} recon.efficiency vs. π^{0} energy

plitting method looks
y.
ficiency $>$ This does not STECAL and ScECAL

- Need tune photon separation for strip-Splitting method.

Summary

- Strip-Splitting method was devised last year.
- With Strip-Splitting method ScECAL with $45 \times 5 \mathrm{~mm}$ scintillator strip achieved less than 30% of JER/VE for 45 GeV jet.
- Still not arrived at SiECAL resolution.
- Basic energy resolutions for one photon events is almost similar for ScECAL and SiECAL.
- Some rooms are there for improvement of cluster separation.
- Difference of performance between SiECAL and ScECAL should be removed with fine tuning of PandoraPFA. Event by event study
- Implement StripSplitting method in Calice-soft

Hybrid ECAL

- Daniel Jeans implemented this algorithm for Sc-Si hybrid ECAL and brushed up it, called hybridRecoProcessor,
- Current Mokka, one can select scintillator layer or silicone layer only by alveolus,

| sisi | scsc | s |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- I have already registered to make SVN repository for HybridRecoProcessor at DESY, ... but not yet released,

Mark's tuning $100 \mathrm{GeV}, 180 \mathrm{GeV}$

Mark's tune works only for 45 GeV Jet events,

Energy of particles in 1.5 TeV Jet

- Energy of photons is dominated by less than 10 GeV

Jet energy resolution vs. scintillator strip length at higher energy

Even at $\sqrt{ } \mathrm{s}=500 \mathrm{GeV}$, $45 \mathrm{~mm} \times 5 \mathrm{~mm}$ ScECAL shows similar performance to that of $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ square tile ScECAL.

Two photon clusters in SiEcal and ScStirpEcal with Splitting method

Position resolution: in z for 10 GeV photons

Position difference between reconstructed position and MC true ($\mathbf{z}=\mathbf{Z}_{\text {rec }}-\mathbf{z M c}_{\text {M }}$) at the ILD ECAL surface for 10 GeV photons with incident polar angles approximately 90°.

For $45 \mathrm{~mm} \times 5 \mathrm{~mm}$ strips:

Systematic shift is removed by the stripsplitting method.

