RF operation with fixed Pks Shin MICHIZONO (KEK)

Solution (1); QI proportional to Ib

- Simulation configuration –rectangular distribution
- Solution (2); QI optimization with 20% gradient distribution
- Solution (3); QI optimization with 10% gradient distribution

RF distribution system (RDS)

- RDR: 1 klystron drives 26 same gradient cavities (31.5MV/m).
- TDR: 1 klystron drives 39 cavities with gradient variation (25 MV/m \sim 38 MV/m).
 - 1) PkQI control is proposed.
 - 2) new: semi-fixed Pks were proposed to reduce the RDS cost.
- -> Pks are optimized at some beam current and are not changed during various beam operation. -> Is it reasonable to fix Pks for near-quench-limit operation?

Solution (1) –QI proportional to Ib

PkQI control

$$V_{cav} = 2 \frac{r}{Q} Q_L Igen \cdot (1 - exp\left(-\frac{T_{inj}}{\tau}\right))$$

If we select QI to be proportional to beam current (so Igen) and select filling time also proportional to QI (or Ibeam), we can keep Vcav with various beam current.

$$Q_{L} = \frac{Igen0}{Igen} Q_{L0} = \frac{Ibeam0}{Ibeam} Q_{L0}$$
$$T_{inj} = \frac{\tau}{\tau_0} T_{inj0} = \frac{Ibeam}{Ibeam0} T_{inj0}$$
$$Pk = \frac{1}{4} \frac{r}{Q} Q_{L} (Igen)^2 = \frac{1}{4} \frac{r}{Q} Q_{L0} Igen0 Igen = \frac{Ibeam}{Ibeam0} Pk0$$

Configuration: QIs with 20% Vcav variation

- 13 cavities having the operational gradient from 25.5 MV/m to 37.5 MV/m.
- Gradient spread is ~ rectangular distribution.

Suppose operational gradients (25.5 MV/m~37.5MV/m) are 5% lower than quench limit. KILC12, Apr.22, 2012

Solution (1) –QI proportional to Ib

Cavity gradient can keep the same value with various beam current. However, filling time (and QIs) becomes too large (~5ms filling time at 1mA beam).

Solution (2) -Qls with 20% Vcav variation

- 13 cavities having the operational gradient from 25.5 MV/m to 37.5 MV/m.
- Gradient spread is ~ rectangular distribution.

Suppose operational gradients (25.5 MV/m~37.5MV/m) are 5% lower than quench limit. KILC12, Apr.22, 2012

Simulation procedure

1. Optimize the Pks for 6mA beam operation

I select 850us filling time. (lowest rf power =2.677MW(~4.9% higher than beam loading(= optimized same QI, Vacc control)) QIs are 8.9e6(24.5MV/m) ~3.2e6(37.5MV/m)

2. Under these Pks, optimize filling time, Pin, step ratio (rr) and Qls.

Performance at various Ibeam

Ibeam	Filling	Pin	rr	Additional	Additional
[mA]	[us]			Vacc	Vacc [%]
				[MV/m]	
6	850	1	1	0	0
4	950	1	0.8	2.35	9.2
2	870	1	0.6	3.63	14.2
0	800	1	0.9	4.03	15.8

Low gradient cavity shows the gradient ~10% higher.

Performance at 4mA

Performance at 2mA

Lower 4 cavities exceed their Vacc value at 6mA.

KILC12, Apr.22, 2012

Performance at 0mA

Lower 4 cavities exceed their Vacc value at 6mA.

KILC12, Apr.22, 2012

Performance at various Ibeam

lbeam [mA]	Filling [us]	Pin	rr	Additional Vacc [MV/m]	Additional Vacc [%]
6	850	1	1	0	0
4	950	1	0.8	2.35	9.2
2	870	1	0.6	3.63	14.2
0	800	1	0.9	4.03	15.8

25MV/m~30MV/m cavities should be operated <20% than quench limit.

-> In case of the rectangular gradient variation, <u>25~30MV/m</u> cavities are <u>5/13(=38%)</u> Average gradient of 25-30MV/m=27.5MV/m

15% more margin than nominal cavities; 27.5*0.15*0.38/31.5=0.0503 (=5%)

Total accelerating energy decrease ~5% in case of the semi-fixed Pks configuration.

Solution (3) -Qls with 10% Vcav variation

- 13 cavities having the operational gradient from 28.5 MV/m to 34.5 MV/m.
- Gradient spread is ~ rectangular distribution.

Suppose operational gradients (28.5 MV/m~34.5MV/m) are 5% lower than quench limit. KILC12, Apr.22, 2012

Simulation procedure

1. Optimize the Pks for 6mA beam operation

I select 850us filling time. (lowest rf power =2.58MW(~1.2% higher than beam loading(= optimized same QI, Vacc control)) QIs are 6.77e6(28.5MV/m)~4.11e6(34.5MV/m).

2. Under these Pks, optimize filling time, Pin, step ratio (rr) and Qls.

Performance at various Ibeam

Ibeam	Filling	Pin	rr	Additional	Additional
[mA]	[us]			Vacc	Vacc [%]
				[MV/m]	
6	850	1	1	0	0
4	930	1	0.8	0.57	2.00
2	980	1	0.6	1.42	5.00
0	780	1	0.6	1.75	6.15

Low gradient cavity shows the gradient ~5% higher.

Performance at 4mA

Lowest gradient cavity slightly exceeds the 6mA operated gradient. KILC12, Apr.22, 2012

Performance at 2mA

Lower 4 cavities slightly exceed their Vacc value at 6mA.

KILC12, Apr.22, 2012

Performance at 0mA

Lower 4 cavities slightly exceed their Vacc value at 6mA.

KILC12, Apr.22, 2012

Performance at various Ibeam

lbeam [mA]	Filling [us]	Pin	rr	Additional Vacc [MV/m]	Additional Vacc [%]
6	850	1	1	0	0
4	930	1	0.8	0.57	2.00
2	980	1	0.6	1.42	5.00
0	780	1	0.6	1.75	6.15

28.5MV/m~30MV/m cavities should be operated <10% than quench limit.

-> In case of the rectangular gradient variation, <u>28.5~30MV/m cavities are 4/13(=31%)</u> Average gradient of 28.5-30MV/m=29.25MV/m

5% more margin than nominal cavities; 29.25*0.05*0.31/31.5=0.014 (=1.4%)

Total accelerating energy decrease ~1.4% in case of the semi-fixed Pks configuration with 10% gradient variation.

Summary

- Semi-fixed Pks are simulated.
- Solution (1); QI proportional to beam current
 - Perfect cavity gradient with any beam current
 - Huge filling time (and huge QI (~7e7)) is required at low current (such as 1mA).
- Solution (2); Filling time, QI adjustment to minimize the difference in operational gradient under 20% cavity gradient variation.
 - 15% gradient increase at lower gradient cavity.
 - Such cavities should be operated at lower gradient at 6mA.
 - Rough estimate indicates we lose 5% acc. energy (or 5% longer ML is required.)
- Solution (3); Filling time, QI adjustment to minimize the difference in operational gradient under 10% cavity gradient variation.
 - 5% gradient increase at lower gradient cavity.
 - Such cavities should be operated at slightly lower gradient at 6mA.
 - Rough estimate indicates we lose 1.5% acc. energy (or 1.5% longer ML is required.)
- In addition to these difference in cavity gradient with various beam current, we should include the tolerance of the Pks.

Thank you for your attention