
Multi tau lepton signatures in leptophilic 2HDM at ILC

PRESENTATION

Koji TSUMURA (Nagoya Univ.) KILC12 23-27/4/2012

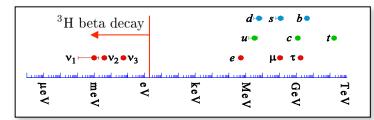
Outline:

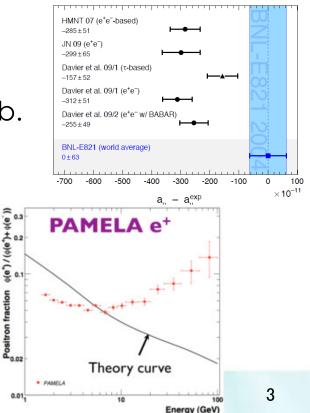
- Leptophilic 2HDM
- Experimental constraints
- LHC search
- ILC search

Why do we focus on Leptophilic Higgs boson?

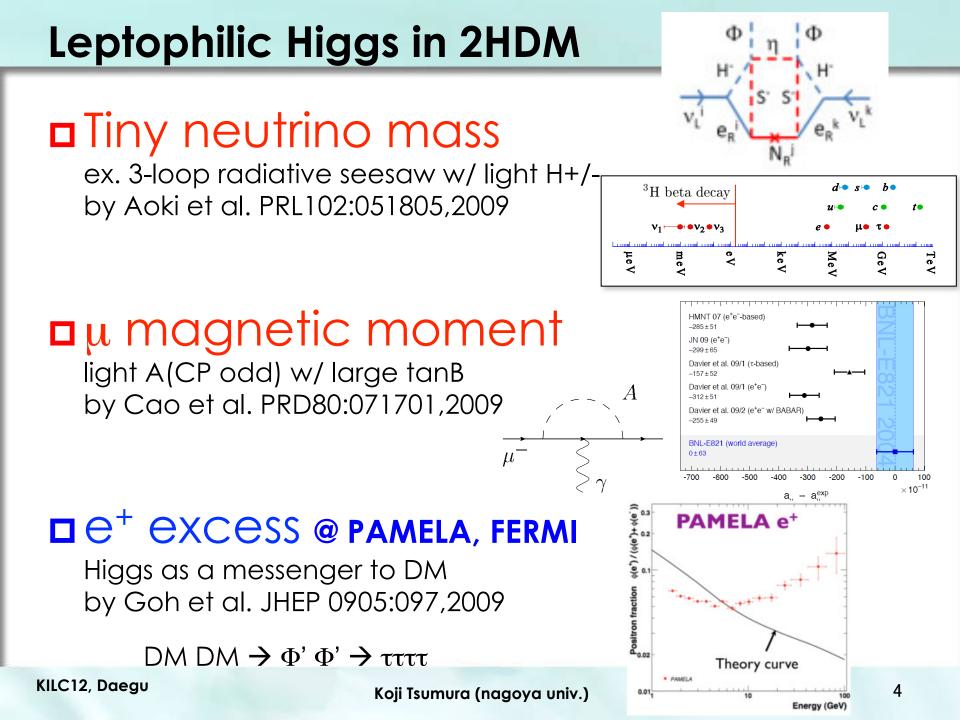
New physics in Lepton sector

Tiny neutrino mass


- Tree level seesaw (Type-II)
- Radiative seesaw (Zee, Zee-Babu, Ma,...)
- These models introduce **new scalars**.


uμ magnetic moment

New LIGHT scalars can give sizable contrib.

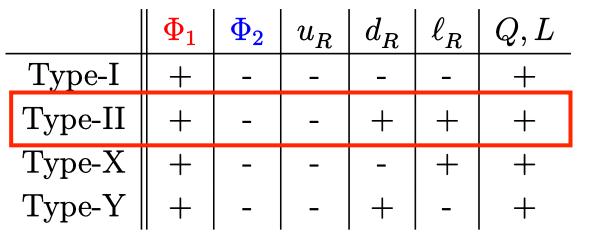

□ e⁺ excess @ pamela, fermi

New **Lepton-specific** scalar play a role of a messenger to DM

Koji Tsumura (nagoya univ.)

Classify 2HDMs by Yukawa

□ General 2HDM (Type-III) $\mathcal{L} = \overline{L} \left(Y_{\ell 1} \Phi_1 + Y_{\ell 2} \Phi_2 \right) \ell_R + \text{H.c.}$

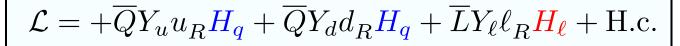

Yukawa int. is not simultaneously diagonalized with mass matrix. → Generate **tree level FCNC** (Flavor changing neutral current).

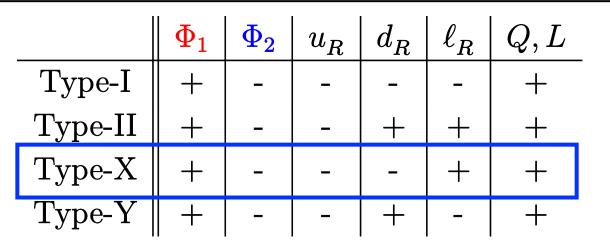
Adding extra Z2 sym. to avoid FCNC

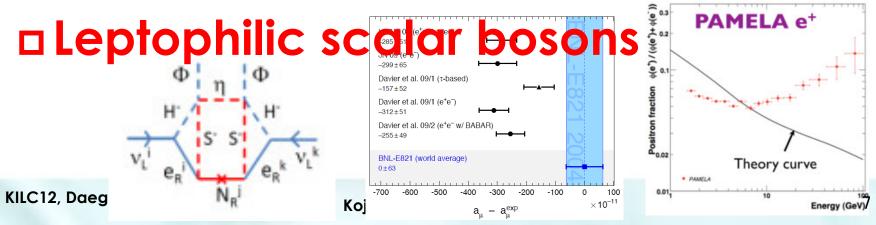
$$\begin{split} \Phi_1 &\to +\Phi_1, \quad L \to +L \\ \Phi_2 &\to -\Phi_2, \quad \ell_R \to -\ell_R \end{split}$$
$$\mathcal{L} &= \overline{L} \left(\swarrow +Y_{\ell 2} \Phi_2 \right) \ell_R + \text{H.c.}$$

4 types of Yukawa int.

4 independent combinations of Z2 charges




Type-II: 2HDM structure in SUSY


$$\mathcal{L} = +\overline{Q}Y_u u_R H_u + \overline{Q}Y_d d_R H_d + \overline{L}Y_\ell \ell_R H_d + \text{H.c.}$$

2HDM-X as a low energy effective theory

Higgs doublets distinguish quarks and leptons

2HDM

$\Box \text{ Softly Z2 broken 2HDM} \qquad \Phi_{i} = \begin{pmatrix} \omega_{i}^{+} \\ \frac{1}{\sqrt{2}}(v_{i} + h_{i} + i z_{i}) \end{pmatrix}$ $V_{2\text{HDM}} = m_{1}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{2}^{2} \Phi_{2}^{\dagger} \Phi_{2} - \left(m_{3}^{2} \Phi_{1}^{\dagger} \Phi_{2} + \text{H.c.}\right) + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \left[\frac{\lambda_{5}}{2} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + \text{H.c.}\right]$

$\Box \ \underline{5 \ Physical \ Higgs \ bosons} \ \left(assume \ CP \ inv. \right) \ m_3^2, \lambda_5 \ real$ $\binom{h_1}{h_2} = R(\alpha) \binom{H}{h}, \ \binom{z_1}{z_2} = R(\beta) \binom{z}{A}, \ \binom{\omega_1^+}{\omega_2^+} = R(\beta) \binom{\omega^+}{H^+}, \ R(\theta) = \binom{\cos \theta \ -\sin \theta}{\sin \theta \ \cos \theta}$

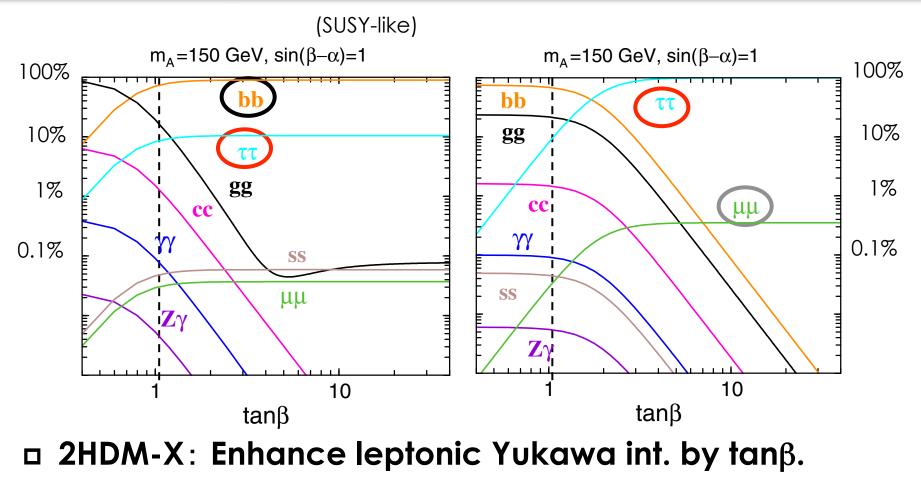
Mass spectrum(in SM-like limit)

$$m_h^2 \sim 2\lambda v^2$$
, $m_{H,A,H^{\pm}}^2 \sim M^2 + \frac{\lambda v^2}{2}$ where $M^2 \equiv m_3^2/(\sin\beta\cos\beta)$
 $m_{V_{\mu}}^{V_{\mu}} \sin(\beta - \alpha) (=1)$, $\tan\beta$ are also free parameters
 $m_{V_{\nu}}^{V_{\mu}}$

KILC12, Daegu

Type-X Yukawa interaction

□ Yukawa int. of extra scalars (H,A,H⁺) in the SM-like limit is corrected by a factor of $tan\beta = < \Phi_2 > / < \Phi_1 >$

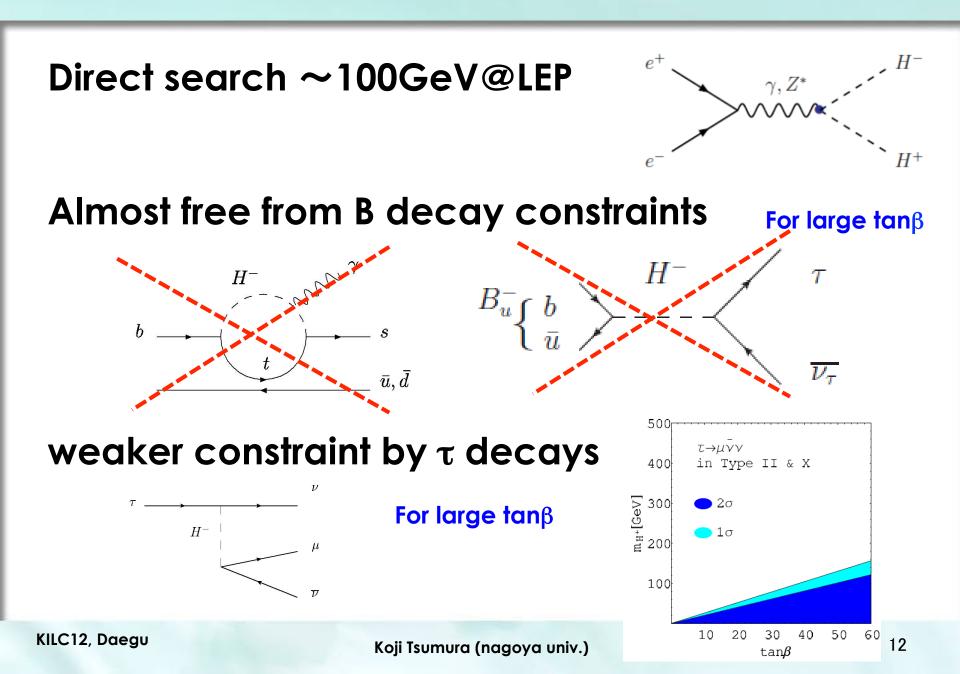

$$\xi^{u}$$
 ξ^{d} ξ^{ℓ} Type-I $1/\tan\beta$ $-1/\tan\beta$ $-1/\tan\beta$ Type-II $1/\tan\beta$ $\tan\beta$ $\tan\beta$ Type-X $1/\tan\beta$ $-1/\tan\beta$ $\tan\beta$ Type-Y $1/\tan\beta$ $\tan\beta$ $-1/\tan\beta$

Type-X: Leptoplilic in tan\beta>3

 m_f/v

1

Higgs decays in 2HDMs

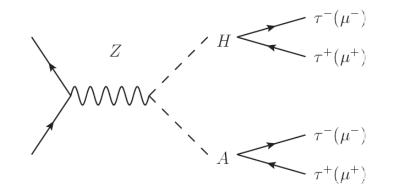


 \square More than 99% of H/A decay into $\tau\tau$

a Sizable $\mu\mu$ [(m_u/m_t)²=1/300] mode

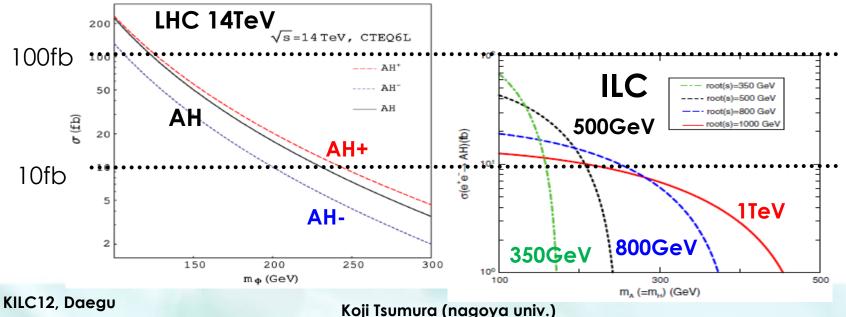
Experimental constraints

- Direct search results
- **B** decays
- Tau decays



Leptophilic Higgs boson @ colliders

LHC vs ILC


Test of Leptophilic-2HDM @ LHC and ILC

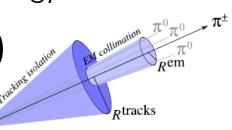
DY production with leptonic decay modes

Multi tau lepton signatures 4τ : more than 99% $2\mu 2\tau$: $\sigma(4\tau) \ge 1/300 \ge 2!$

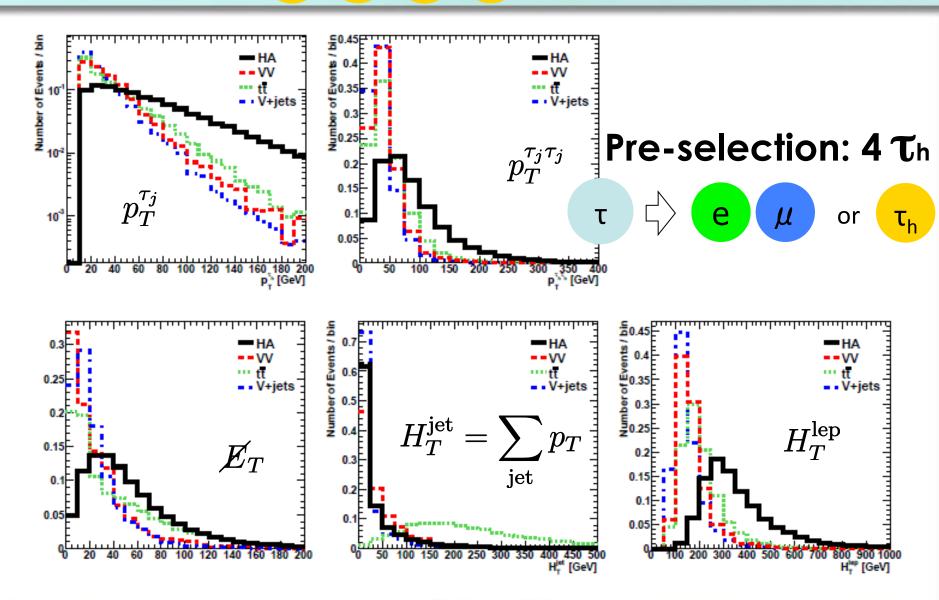
□ Cross sections are O(10)fb @ LHC & ILC

LHC14

- **α** mH=130GeV & mA=170GeV [σ=50fb]
- BG [VV(107pb), ttbar(492pb), DY(30nb)]


Event analysis details (for LHC14 and ILC500)

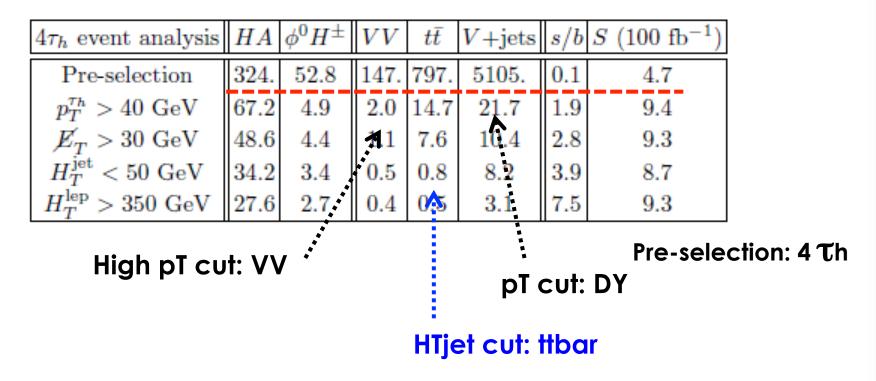
-FastJet, TAUOLA, PYTHIA, MG5 are used, jet is defined by anti-kT w/ R<0.4


-Identification of hadronic τ

Require 1 or 3 charged-hadron(s) (1- & 3-prong)

□ Narrow cone R<0.15 (95% of ET)

$4\tau_h$ channel : T_h T_h T_h O (an example)



KILC12, Daegu

Koji Tsumura (nagoya univ.)

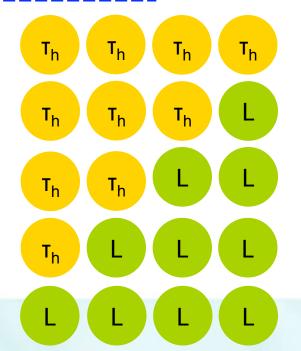
 $4\tau_h$ channel : T_h T_h T_h M T_h M (an example)

perform selection cuts to enhance signal/background ratio

• Significance estimator:

$$S = \sqrt{2[(s+b)\ln(1+s/b) - s]} \simeq s/\sqrt{b} \quad (s \ll b)$$

$4\tau_h$ channel : T_h T_h T_h O (an example)


Optimize kinematical cuts, and many channels

$4\tau_h$ event analysis	HA	$\phi^0 H^\pm$	VV	$t\bar{t}$	V+jets	s/b	$S \ (100 \ {\rm fb^{-1}})$
Pre-selection	324.	52.8	147.	797.	5105.	0.1	4.7
$p_T^{\tau_h} > 40 \text{ GeV}$	67.2	4.9	2.0	14.7	21.7	1.9	9.4
$\not\!$	48.6	4.4	1.1	7.6	10.4	2.8	9.3
$H_T^{\rm jet} < 50 { m ~GeV}$	34.2	3.4	0.5	0.8	8.2	3.9	8.7
$H_T^{\rm lep} > 350~{\rm GeV}$	27.6	2.7	0.4	0.5	3.1	7.5	9.3

L=100 [fb⁻¹]

Lester channels	$4\tau_h$		$3\tau_h 1\mu$		$3\tau_h 1e$		$2\tau_h 1\mu 1e$		$2\tau_h 2e$	
Lepton channels	s/b	(S)	s/b	(S)	s/b	(S)	s/b	(S)	s/b	(S)
Pre-selection	377./6050.	(4.8)	302./4208.	(4.6)	278./3883.	(4.4)	166./917.	(5.3)	74.4/13202.	(0.6)
$p_T^{\tau_h} > 40 \text{ GeV}$	72.1/38.5	(9.5)	87.2/70.2	(8.9)	80.2/72.2	(8.2)	71.7/67.5	(7.6)	32.4/479.	(1.5)
$E_T > 30 \text{ GeV}$	53.0/19.0	(9.3)	69.3/54.6	(8.0)	63.4/53.8	(7.5)	58.0/58.6	(6.7)	26.3/38.6	(3.8)
$H_T^{\rm jet} < 50 { m ~GeV}$	37.6/9.6	(8.7)	49.0/17.4	(8.9)	44.9/23.0	(7.6)	41.7/13.7	(8.5)	18.7/16.0	(4.0)
$H_T^{ m lep} > 350~{ m GeV}$	30.3/4.0	(9.3)	34.5/8.4	(8.4)	31.4/10.9	(7.2)	24.2/3.8	(8.0)	10.7/8.2	(3.2)
$(m_Z)_{ee} \pm 10 \text{ GeV}$	-	(-)	-	(-)	-	(-)	-	(-)	9.3/2.5	(4.2)

Lenten ekennele	$1\tau_h 1\mu 2e$		$1\tau_h 3e$		$1\mu 3e$		4e	
Lepton channels	s/b	(S)	s/b	(S)	s/b	(S)	s/b	(S)
Pre-selection	29.2/132.	(2.5)	8.7/120.	(0.8)	1.7/7.6	(0.6)	0.4/268.	(0.0)
	19.3/38.6					(-)		(-)
$\not{E}_T > 30 \text{ GeV}$								
$(m_Z)_{ee}\pm 10~{\rm GeV}$	13.6/2.4	(5.8)	4.0/6.5	(1.4)	1.1/1.2	(0.9)	0.2/0.7	(0.2)

KILC12, Daegu

Koji Tsumura (nagoya univ.)

 $4\tau_h$ channel : T_h T_h T_h O (an example)

L=100 [fb⁻¹]

Remarks:

□ Higgs boson masses may be obtained by finding endpoints of $M_{\tau_h \tau_h}$ distributions. mH=130GeV & mA=170GeV

Pairing of tau-jets from the four can be chosen for the pair which has max. transverse momentum of tau-jet-pair, or which has smallest distance.

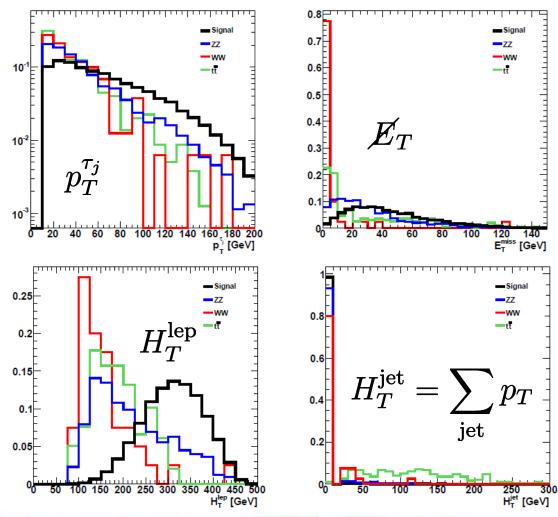
Does ILC have advantages?

-Precise mass determination by using collinear approx.

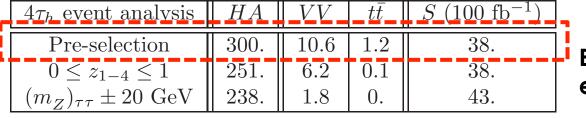
$$\vec{\mathbf{0}} = z_1^{-1} \vec{p_{\tau_{j1}}} + z_2^{-1} \vec{p_{\tau_{j2}}} + z_3^{-1} \vec{p_{\tau_{j3}}} + z_4^{-1} \vec{p_{\tau_{j4}}} \\ \sqrt{s} = z_1^{-1} E_{\tau_{j1}} + z_2^{-1} E_{\tau_{j2}} + z_3^{-1} E_{\tau_{j3}} + z_4^{-1} E_{\tau_{j4}}$$

4 unknown(z1-z4) are calculated by solving simultaneous 4 eqs.

 \rightarrow 4 τ mom. are fully reconstructed from taujet & missing mom.!!

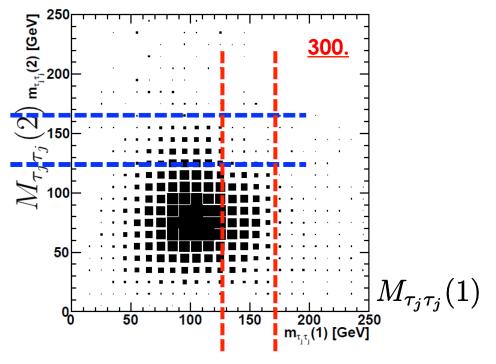

No missing other than tau decays

KILC12, Daegu


Koji Tsumura (nagoya univ.)

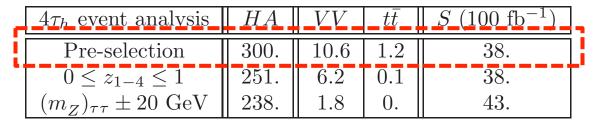
HA: 30fb for mH=130GeV & mA=170GeV ZZ, ttbar, WW: 567fb,580fb, 7700fb @ ILC

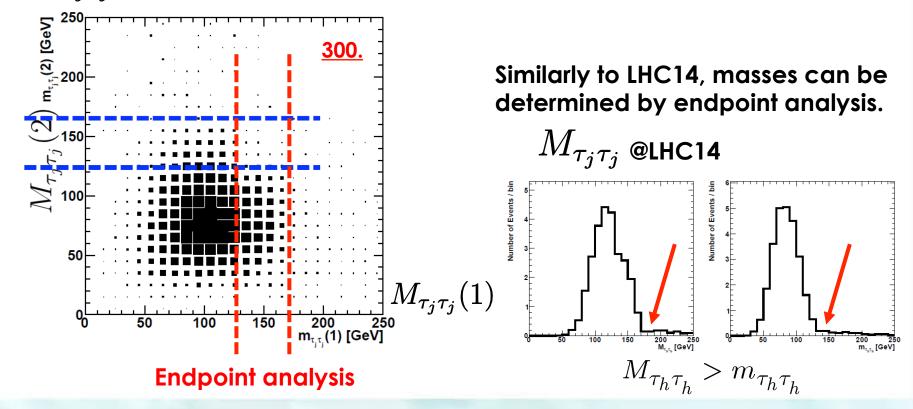
Before pre-selection cuts!! (Normalized by same # of evts)



$4\tau_h$ channel : T_h T_h T_h M T_h M (an example)

BG events are well reduced even at pre-selection level!!

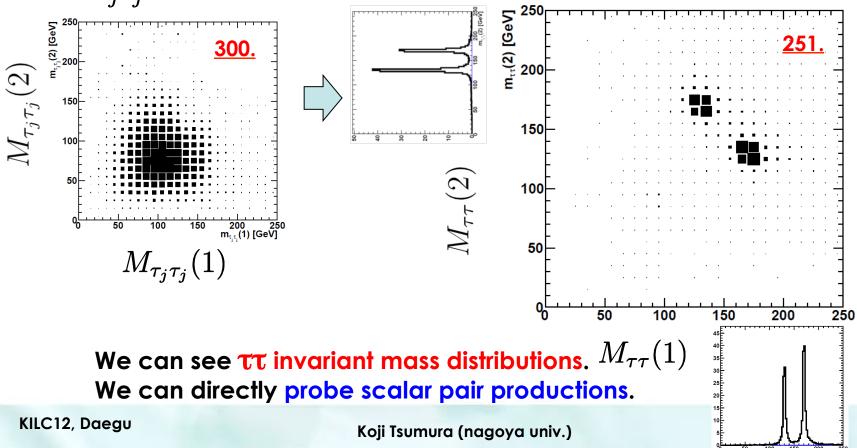

 $\square M_{\tau_j \tau_j}$ @ILC500 (before collinear approx.)


Endpoint analysis

KILC12, Daegu

$4\tau_h$ channel : T_h T_h T_h T_h @ILC500 (an example)

 $\square M_{\tau_i \tau_i}$ @ILC500 (before collinear approx.)



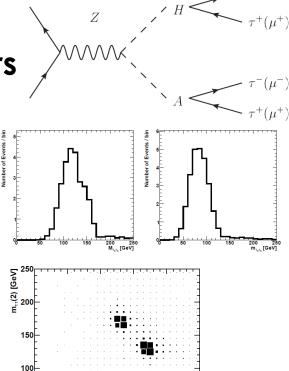
KILC12, Daegu

$4\tau_h$ channel : T_h T_h T_h T_h @ILC500 (an example)

$4\tau_h$ event analysis S (100 fb^-) HAttPre-selection 300 389 $0 \le z_{1-4} \le 1$ 6.238. 251.0.1 $(m_Z)_{ au au} \pm 20~{ m GeV}$ 238.0. 43. 1.8

$\square M_{\tau_i \tau_i} \rightarrow \text{collinear approx.}$

24


Summary

□ Type-X (leptophilic) 2HDM is interesting.

- Light scalar bosons are allowed by experimental data.
- **\square** Scalar bosons mainly decay into τ .

Multi tau lepton signatures at colliders

- **D** DY production & H/A $\rightarrow \tau \tau$
- \square 4 τ signal @ LHC14 w/o collinear approx.
 - Endpoint analysis for mass
- \square 4 τ signal @ ILC500 w/ collinear approx.
 - Invariant Mass analysis
 - Directly probe pair productions

m_{ττ}(1) [GeV]

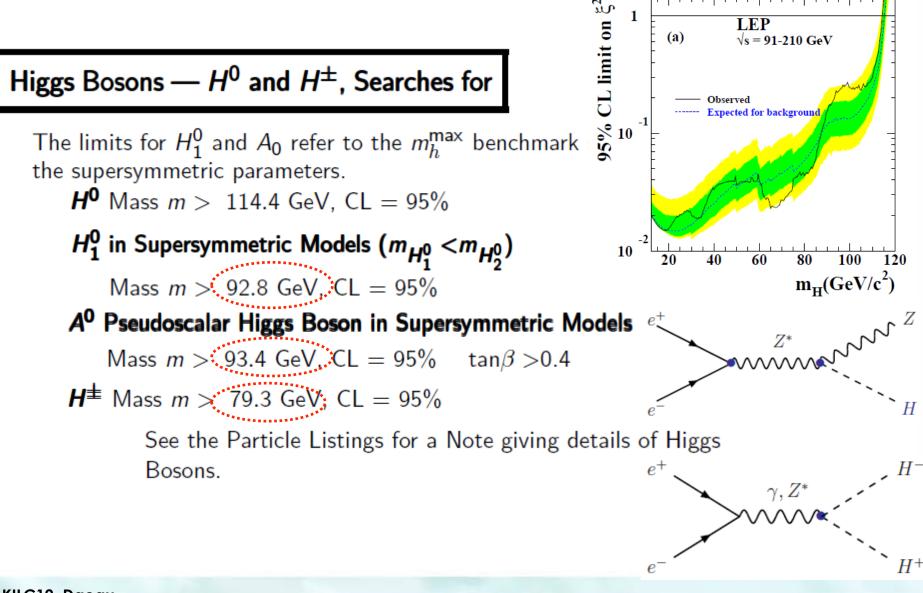
Back up

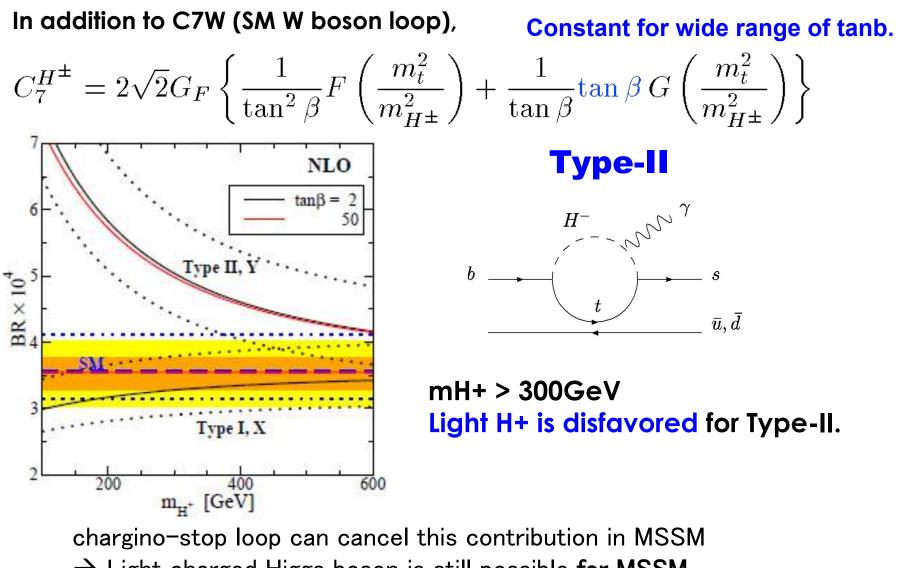
ρ-parameter

□ In the SM (top-bottom, Higgs-gauge loop)

$$\underbrace{\Delta\rho_t = \frac{3G_F m_t^2}{8\sqrt{2}\pi^2}, \quad \Delta\rho_h = -\frac{3G_F m_Z^2 s_W^2}{8\sqrt{2}\pi^2} \left(\ln\frac{m_h^2}{m_W^2} - \frac{5}{6}\right)}_{8\sqrt{2}\pi^2}$$

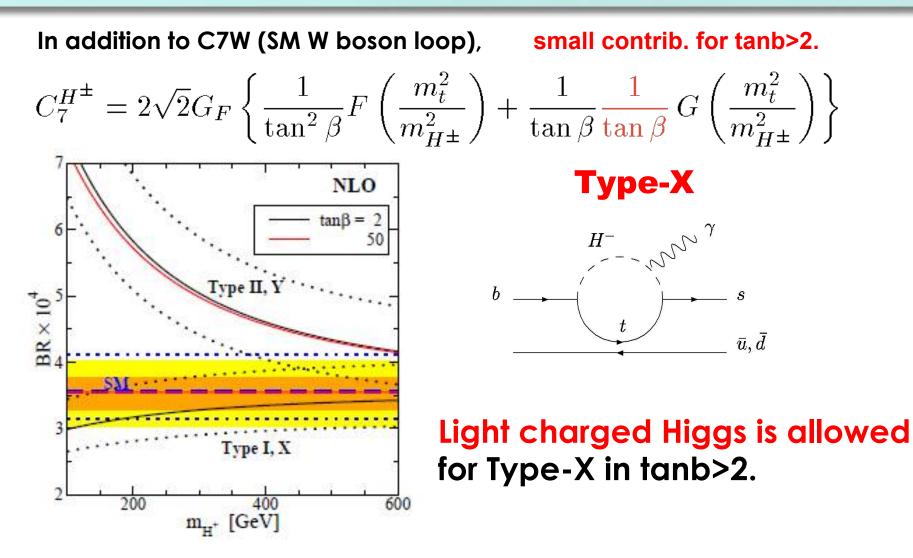
□ In the 2HDM (in addition, Higgs-Higgs loop)

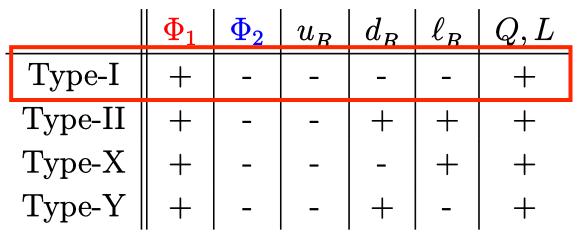

$$\begin{split} \Delta \rho_{\Phi} &= \frac{G_F}{8\sqrt{2}\pi^2} \Big[F_{\Delta}(m_{H^{\pm}}^2, m_A^2) + s_{\beta-\alpha}^2 F_{\Delta}(m_{H^{\pm}}^2, m_H^2) + c_{\beta-\alpha}^2 F_{\Delta}(m_{H^{\pm}}^2, m_h^2) \\ &+ s_{\beta-\alpha}^2 F_{\Delta}(m_A^2, m_H^2) + c_{\beta-\alpha}^2 F_{\Delta}(m_A^2, m_h^2) \Big] \\ F_{\Delta}(m_1^2, m_2^2) &= \frac{m_1^2 + m_2^2}{2} - \frac{m_1^2 m_2^2}{m_1^2 - m_2^2} \ln \frac{m_1^2}{m_2^2} \end{split}$$


Typical solutions

KILC12, Daegu

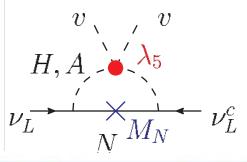
Koji Tsumura (nagoya univ.)


Direct search limit for scalar bosons

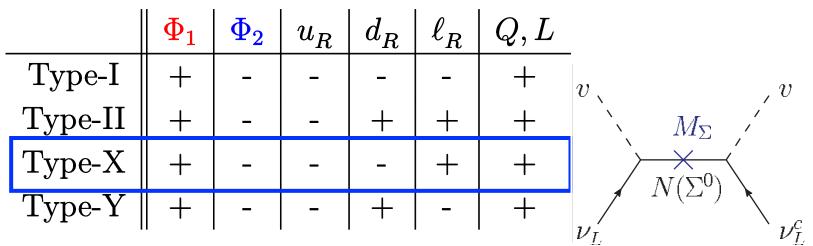

 \rightarrow Light charged Higgs boson is still possible for MSSM.

KILC12, Daegu

4 types of Yukawa int.


4 independent combinations of Z2 charges

Type-I: SM-like Higgs and an extra scalar


Fermion masses are generated only from $\Phi 2$

(may relate for Ma model,...< Φ 1>=0)

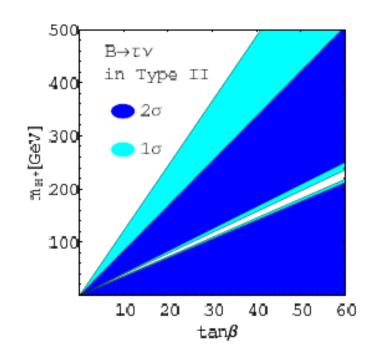
4 types of Yukawa int.

4 independent combinations of Z2 charges

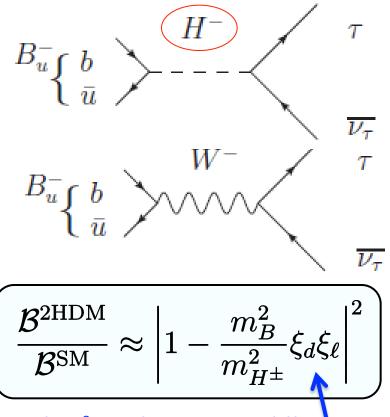
Type-X: gauged type-III seesaw

$$\mathcal{L} = +\overline{Q}Y_u u_R \widetilde{H}_q + \overline{Q}Y_d d_R H_q + \overline{L}Y_\ell \ell_R H_\ell + \text{H.c.}$$

Higgs bosons distinguish quarks and leptons!!

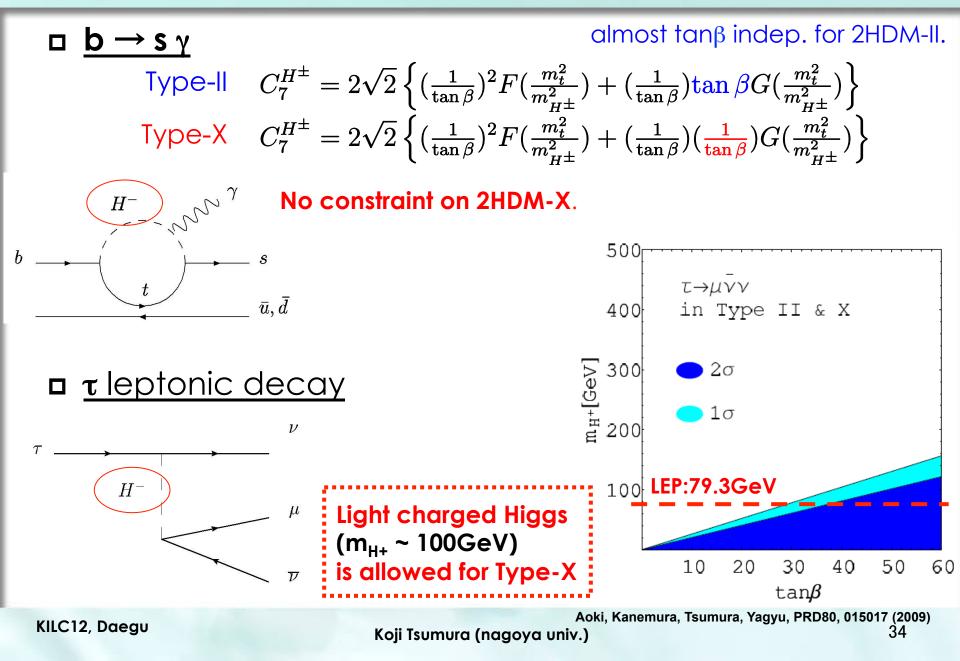

Extra Higgs can be leptophilic (tan β >3)

KILC12, Daegu

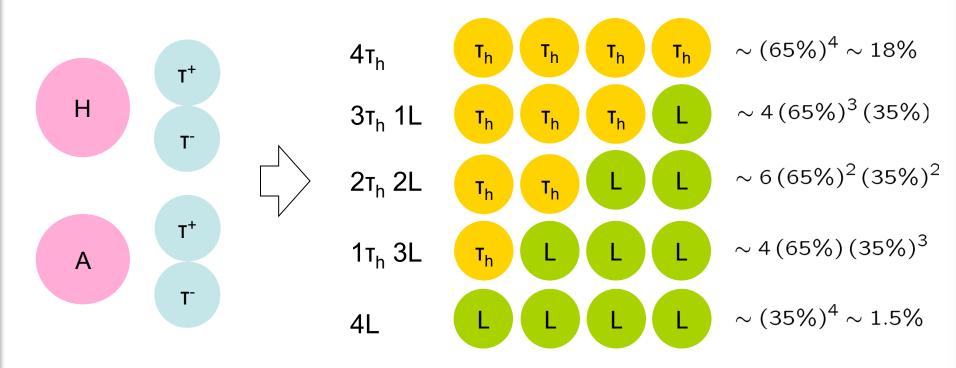

Koji Tsumura (nagoya univ.)

$\textbf{B} \rightarrow \tau \, \nu \text{ in 2HDMs}$

In 2HDMs, charged Higgs boson contrib. can be important!


	ξ^u	ξ^d	ξ^ℓ		
Type-I	$1/\tan\beta$	$-1/\taneta$	$-1/\taneta$		
Type-II	$1/\tan\beta$	aneta	aneta		
Type-X	$1/\tan\beta$	$-1/\taneta$	aneta		
Type-Y	$1/\tan\beta$	aneta	$-1/\taneta$		

tan²β enhancement !! well known stringent constraint on SUSY(2HDM-II) charged Higgs


No constraint on 2HDM-X.

Other flavour constraints

4τ lepton signature

- $pp \to Z^* \to HA$
- H/A decay into tau-lepton pair by more than 99%.

• more tau-jets, the larger branching ratios

=

e

μ