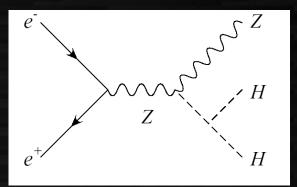
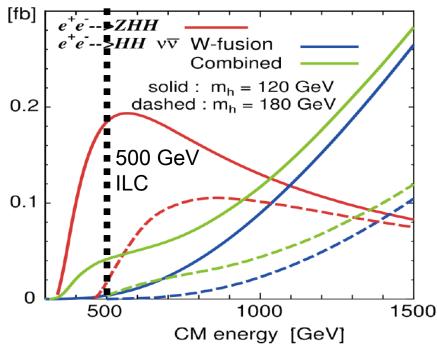
#### Study of Higgs Self-coupling at ILC

#### Taikan Suehara (ICEPP, U. Tokyo)


#### J. Tian(KEK), T. Tanabe (Tokyo), K. Fujii(KEK) and all ILD colleagues

# The only probe for Higgs potential: self coupling

#### SM force


| Lagrangian term                               | example                        | The last force in CM                                                                                                                                                                                                                                                  |
|-----------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gauge force                                   | QCD, electroweak               | <ul><li>The last force in SM</li><li>A good probe for BSM</li></ul>                                                                                                                                                                                                   |
| Yukawa force                                  | Higgs-fermion                  | with ~30% accuracy                                                                                                                                                                                                                                                    |
| Higgs force                                   | Higgs self-coupling            | With 0070 accaracy                                                                                                                                                                                                                                                    |
| $V(\Phi) = \mu^2  \Phi ^2 + \lambda  \Phi ^4$ | $\phi^0$                       | $500 \text{MSSM} + \chi$ $300 \text{MSSM} + \chi$ $100 \text{MSSM} (\lambda_{\text{HHS}} = 0 - 2.5)$ $4D + \Omega$ $100 \text{MSSM}$ $0 - 10 - 20 - 30 - 40 - 50 - 60 - 70 - 80$ $\Delta \lambda_{\text{hhh}}^{\text{Model}} / \lambda_{\text{hhh}}^{\text{SM}} [\%]$ |
| $v(\Psi) = \mu  \Psi  + \lambda  \Psi $       | + n.c., $\mu < 0, \lambda > 0$ | ra, SUSY case: Kanemura et al. (2011)                                                                                                                                                                                                                                 |

### ZHH in 500 GeV ILC



#### Double Higgs-strahlung: largest xsec around 500 GeV

total cross section



| Decay mode         | BR. | # events in 2 ab <sup>-1</sup> |
|--------------------|-----|--------------------------------|
| qqbbbb             | 32% | 146                            |
| vvbbbb             | 9%  | 42                             |
| ppppddpp<-*WWddpp  | 6%  | 28                             |
| llbbbb             | 4%  | 19                             |
| qqbbWW*->qqbbqql∨  | 3%  | 14                             |
| qqbbWW*->qqbbl∨qq  | 3%  | 14                             |
| others             | 43% | 194                            |
| tt -> bbqqqq       |     | ~800,000                       |
| ZZZ, ZZH -> qqbbbb |     | ~600                           |

m<sub>u</sub>=120 GeV

Tiny cross section of 0.2fb (and only half contribute to self coupling diagram) Background (top-pair, ZZH etc.) must be very strongly suppressed

#### **Previous result by Junping**

| put all together<br>(preliminary)<br>blarization: (e-,e+)=(-0.8,0.3) $e^+ + e^- \rightarrow ZHH \ M(H) = 120 \text{GeV} \int Ldt = 2ab^{-1}$ |                                                  |        |            |               |                     |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------|------------|---------------|---------------------|--|--|
| nergy (GeV)                                                                                                                                  | Modes                                            | signal | background | significance  |                     |  |  |
|                                                                                                                                              |                                                  |        |            | excess<br>(I) | measurement<br>(II) |  |  |
| 500                                                                                                                                          | $ZHH  ightarrow (lar{l})(bar{b})(bar{b})$        | 6.4    | 6.7        | 2.1σ          | 1.7σ                |  |  |
| 500                                                                                                                                          | $ZHH  ightarrow ( u ar{ u}) (b ar{b}) (b ar{b})$ | 5.2    | 7.0        | 1.7σ          | 1.4σ                |  |  |
| 500                                                                                                                                          | 7UU (aā)(bī)(bī)                                 | 8.5    | 11.7       | 2.2σ          | 1.9σ                |  |  |
|                                                                                                                                              | $ZHH  ightarrow (qar{q})(bar{b})(bar{b})$        | 16.6   | 129        | 1.4σ          | 1.3σ                |  |  |

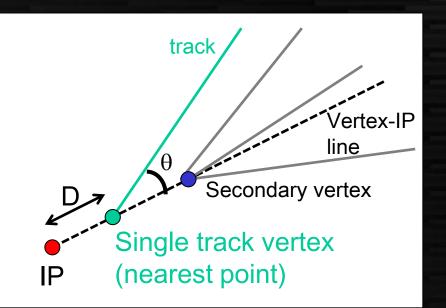
we are interested in:

Po

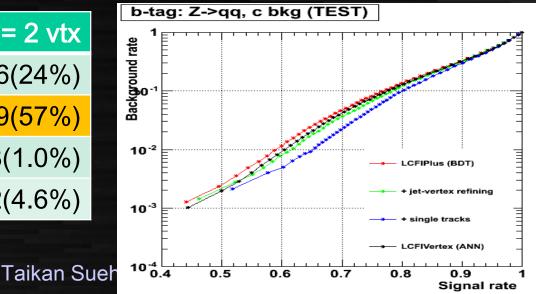
En

A. the combined significance of ZHH excess.

#### HHH coupling sensitivity of 57% ... Need to improve!


#### **Recent progress in reconstruction**

- Jet clustering with vertex
- Single track vertex finder for b-tagging


Issue fixed in MC simulation
 B-baryon life is set to 0 in Lol samples
 -> degrades b-tagging efficiency

#### Recent progress (1) jet clustering ZHH → bbbbbb Multi-jet environment **Durham 6-jet** 6000 • presence of low energy jets Our method Hard gluon emission 4000 MC truth $\rightarrow$ mistakes jet reconstruction, 2000 especially 2 b-jets combined into → degradation in b-counting 0 5 Jet clustering based on vertex finding # b jets 4 b-iet required Avoid combining jet-seeds with bbqqqq efficiency **LCFIVertex** vertices into one jet (old) $\rightarrow$ b-counting efficiency improved 10<sup>-3</sup> 02 08 Suehara, TILC1 qqbbbb efficiency

### Progress (2) Single track vertex



- Normal vertex finder needs
   > 2 tracks
   -> loose many vertices
- Single track vertex can be found by using other vertex direction
- Improves b-tagging performance



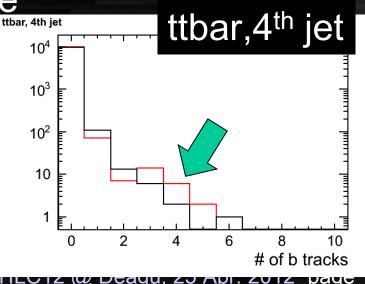
| Event      | 0 vtx | 1 vtx | >= 2 vtx  |
|------------|-------|-------|-----------|
| bb normal  | 322   | 1052  | 426(24%)  |
| bb +single | 322   | 459   | 1019(57%) |
| cc normal  | 1003  | 779   | 18(1.0%)  |
| cc +single | 1003  | 715   | 82(4.6%)  |
|            |       |       |           |

#### Analysis revived ... last week

- With new tools
- Optimization efforts for jet-pairing
- (Lol sample now without B-baryon fix)

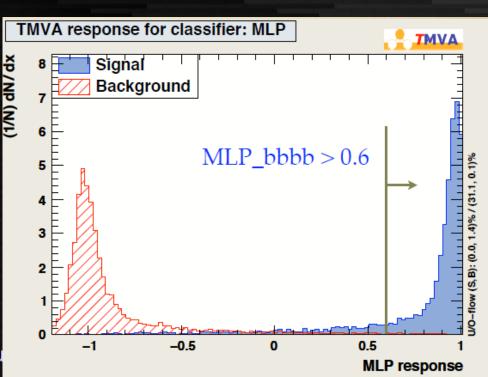
 Non-final result: still has many rooms for improvements

#### ZHH analysis – basic strategy


- Signal: Zhh -> qqhh: 138 events in 2ab-1
  - bbhh: 27 events
    - Powerful separation by b-tagging
    - Difficult mass reconstruction
  - Non-bb qqhh: 111 events
    - Z mass reconstruction by non-b tagged jets
    - Suffered from huge tt background

Mainly ttg -> ttbb

Event identification totally different: prefer independent analysis for bbhh & qqhh

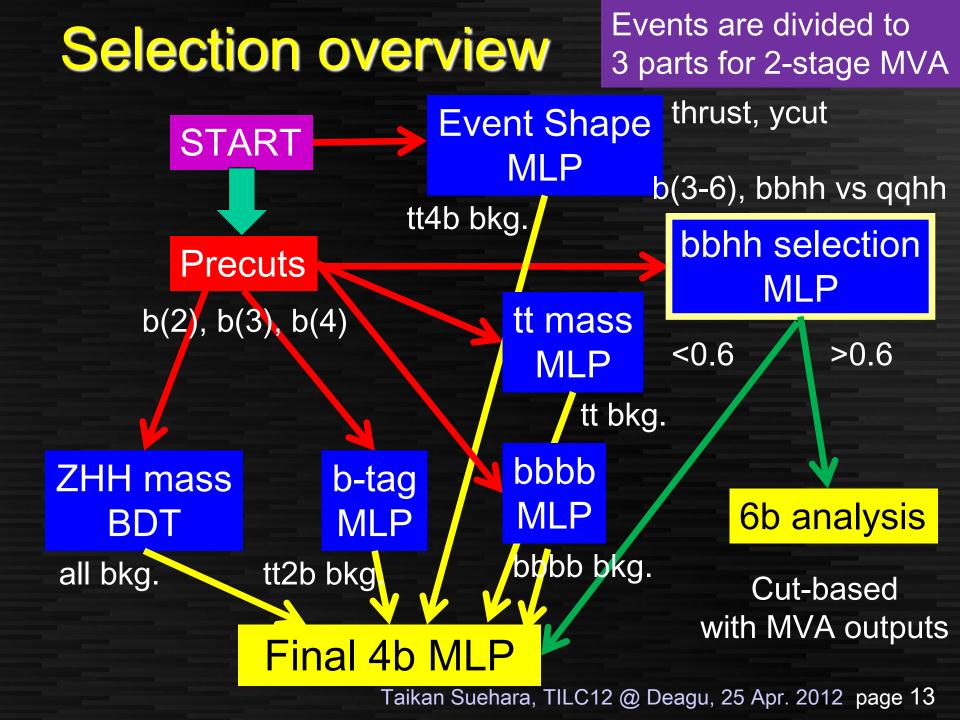

#### Background (1) ttbar

- HUGE: ~800000 (remind signal: 138)
   Basic cut: b-tag 3<sup>rd</sup> & 4<sup>th</sup> jets
- Some (~0.5% in our sample) includes hard gluon emission with g->bb (fake 4-b jets)
  - Unfortunately enhanced in our jet clustering
  - Virtually 8-jet: ycut variable
     & thrust useful
- ttbar / W mass reconstruction
  - Many pairing background
  - Not so efficient Harkan Suehara,

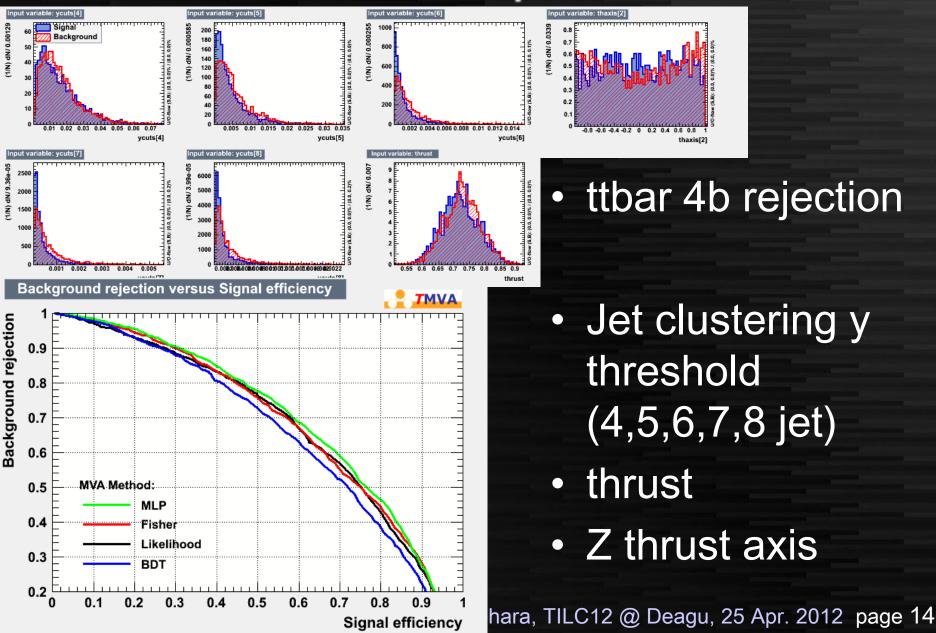


## Background(2) ZZZ, ZZH, ZZ

- Irriducible by b-tag for ZZZ -> qqbbbb, ZZh -> qqbbbb
- Separation possible by separating Z/H mass
   Need to suppress pairing background
- ZZ, ttqq, Inbbqq
   Not fully optimized yet in our analysis
   Junping's result shows good separation



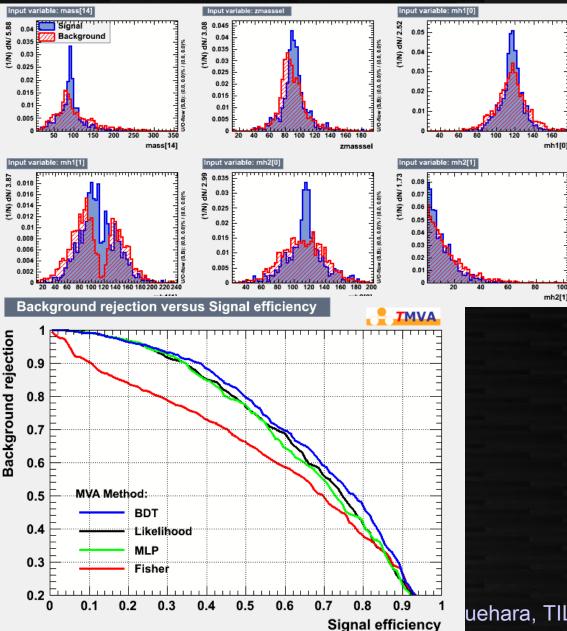

Taikan Su


### **B-tag precut**

Jets are sorted by descending order of b-likeness

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |      | _                      |        |        |                   |                        |                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------------------------|--------|--------|-------------------|------------------------|-------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | bbhh | qqhh | tt                     | ZZZ-6b | ZZZ-4b | ZZh               | ttqq                   | bbbb                    |
| No cut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27   | 111  | 800000                 | 12.5   | 146    | 381               | 2169                   | 40824                   |
| b(2)>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25   | 89   | 282493                 | 11.5   | 109    | 152               | 987                    | 28749                   |
| b(2)>0.8<br>b(3)>0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23   | 61   | 11036                  | 10.2   | 71     | 63                | 263                    | 18151                   |
| b(2)>0.8<br>b(3)>0.6<br>b(4)>0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21   | 37   | 2298<br>(880:<br>#b=4) | 9.4    | 43     | 40                | 153                    | 13004                   |
| $ \begin{array}{c} qqhh vs tt \\ 10^{-1} \\ 10^{-2} \\ 10^{-3} \\ 10^{-4} \end{array} \right) \begin{array}{c} qqhh vs tt \\ 1 \\ 10^{-1} \\ 10^{-4} \end{array} \right) \begin{array}{c} qqhh vs tt \\ 1 \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-2} \\ 10^{-3} \\ 10^{-4} \end{array} \right) \begin{array}{c} qqhh vs tt \\ 1 \\ 10^{-1} \\ 10^{-1} \\ 10^{-2} \\ 10^{-3} \\ 10^{-4} \\ 10^{-5} \end{array} \right) \begin{array}{c} qqhh vs tt \\ 1 \\ 10^{-1} \\ 10^{-4} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-5} \\ 10^{-$ |      |      |                        |        |        |                   |                        |                         |
| 0 0.2 0.4 0.6 0.8 1<br>b-likeness 3rd largest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |      |                        |        | 0 0.2  | 0.4 0.6<br>b-like | 6 0.8<br>eness 4th Iar | <sup>1</sup><br>gest 12 |




#### **Event shape MLP**



#### ZHH mass pairing for 4b analysis

- Jet pairing with b-tagging values
  - 1. Z selection
    - Examine mass of least-b-likeness 2 jets if m<sub>z</sub> +/- 10 GeV, accepted as Z candidate
    - Otherwise, 3<sup>rd</sup> least jet is examined (3 combination)
  - 2. Higgs selction
    - Two higgs from remaining four jets
    - Pairing using Higgs mass (nearest pair)
    - Pairing without Higgs mass (use mass difference between two jet-pairs
    - Both masses put to MVA

#### **ZHH mass MLP**



tt, ZZH, ZZZ combined bkg. Moderate separation seen

 Apparently short statistics – need preselections for more...

#### **Tentative 4b analysis result**

|           | bbhh | qqhh | tt            | ZZZ-6b | ZZZ-4b | ZZh  | ttqq | bbbb  |
|-----------|------|------|---------------|--------|--------|------|------|-------|
| No cut    | 27   | 111  | 800000        | 12.5   | 146    | 381  | 2169 | 40824 |
| Precut    | 21   | 37   | 2298<br>(880) | 9.4    | 43     | 40   | 153  | 13004 |
| 4b part   | 7.5  | 37   | 2212          | 3.9    | 40     | 33   | 140  | 10232 |
| Final MVA | 1.7  | 12.6 | 56            | 0.6    | 6.5    | 10.1 | 14.8 | -     |

- Unfortunately not so good result yet...
- Still have many room for improvement
  - Top mass reconstruction not successful
  - bbbb rejection (should be possible)

#### bbhh mode

10<sup>2</sup>

bbhh

qqhh

qqqqh

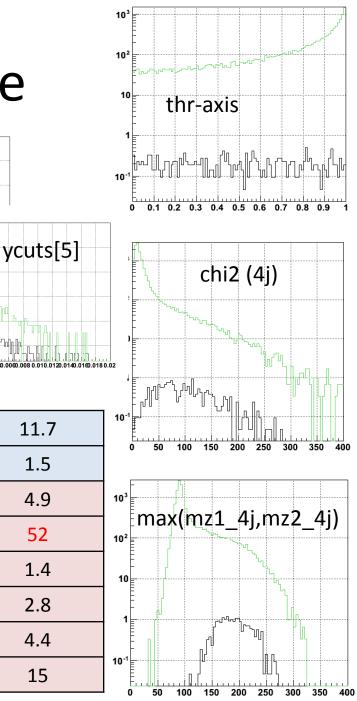
zzz(4b)

zzz(6b)

ttqq

bbbb

6f


ycuts[4]

To ensure no overlap with 4b mode, apply the following selection

 Ibbhh>0.60 (ensure no overlap with 4b mode)

Event selection is performed using:

- lzhh>-0.4 && lzhh<0.05
- thrust < 0.9
- |cos θthrust |<0.95
- ycut[5]>0.00072 && ycut[5]<0.055</li>
- chi2\_4j > 15
- max(mz1\_4j,mz2\_4j)>100
- btag[3]>0.5 (in addition to the pre-selection)
- 90<mH1,2<140, 70<mZ<140



### Prospects

- Many things to do…
  - More training sample (significant)
  - Mokka B-baryon fix incorporation (significant)
  - Color Singlet clustering
  - Mass Constrained clustering
  - Kinematic fit
  - ZVKIN
  - H -> WW\* inclusion
  - Vertex charge
  - and so on....

### Summary

- After developing jet clustering and vertex finder, we got a first step to incorporate those improvements to real ZHH analysis.
- Intense 1-week analysis efforts have not yet obtained satisfactory results
- Intense efforts will continue, to obtain concrete results in 2-3 months
- Higgs self coupling performance is one of the key in ILC promotion over LHC. Workers / advises are very welcome!