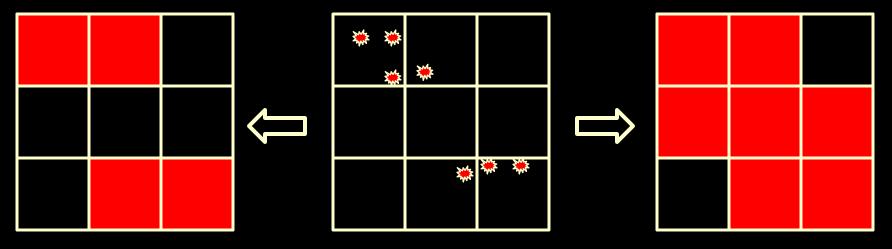

Icsim: Simulation and Reconstruction

Norman Graf (for the sim/reco group) ACFA ILC Meeting Daegu, Korea April 24, 2012

DBD Goals for 2012

- Finalize global system design via detector performance optimization using physics analyses.
- Incorporate latest detector R&D results.
- Incorporate latest engineering designs.
- Improve and understand tracking, PFA and flavor-tagging reconstruction.
- Automate & streamline production sim/reco.



Event Generation

- - Common superset of events in stdhep format have been generated for ILD & SiD.
 - Stored and cataloged on the Grid.
 - Would have liked to use a common set of events for the full detector response simulation, but this seems not to be possible.
 - SiD will create set of files with 80%/20% e-/e+ polarization for signals, SM and machine backgrounds.
 - These samples will also be made available for Snowmass 2013 studies.

slic updates

- Testing Geant4 9.5
- If requested, store and save calorimeter hit positions within cells to enable more refined hit calculations.
 - Will be used to study RPC charge-sharing code.
 - Can write out each individual calorimeter hit in sensitive layers, but creates large output files, would like to integrate into slic.
 - Also working to define efficient time history for cal hits.

RPC response will be improved to account for charge sharing across readout pads, electronic noise and inefficiency.

org.lcsim Calorimetry

- Algorithms will be implemented in reconstruction software, may be migrated to simulation software if deemed appropriate.
- GEM and Micromegas responses will also be modelled.
- Scintillator response will still be supported, input from CALICE on uniformity, etc. will be used.

org.lcsim Tracking I TrackerHit classes will make use of new LCIO classes which support 1D and 2D hits on planar

surfaces.

- Track will incorporate new TrackState classes.
 Existing collections will be moved.
- Improvements in silicon pixel response simulations.
- Incorporate non-prompt tracking into the standard reconstruction and used for V finding?
- Implementing track finding based on 3D hits.

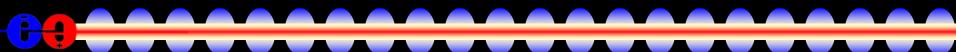
Work ongoing to implement existing Kalman Filter code into standard reconstruction stream.

org.lcsim Tracking II

- Extrapolator will be used to calculate TrackStates at Calorimeter face and at the dca to the IP.
- Should resolve existing deficiencies in track fits.
- Work ongoing to improve overall tracking simulations, lower priority but also useful to other end users.
 - Effects of field map will be investigated.
 - Runge-Kutta stepper code being adapted.

Track Finding: ftf

- Using a conformal mapping technique
 - Maps curved trajectories onto straight lines
 - Simple link-and-tree type of following approach associates hits.
 - Once enough hits are linked, do a simple helix fit
 - circle in r-phi
 - straight line in s-z
 - simple iteration to make commensurate
- Use these track parameters to predict track into regions with only 1-D measurements & pick up hits.
- Outside-in, inside-out, cross-detector: completely flexible as long as concept of *layer exists*.
- Simple fit serves as input to final Kalman fitter.


Track Fitting: trf

- Provides complete infrastructure to define a tracking detector based on surfaces
- Native support for 1D, 2D and 3D hits
- Propagators (analytic as well as RK)
- Interactors (Eloss & MCS)
- Kalman Filter Fitter

Tracking Updates PixSim provides an extremely capable silicon

- PixSim provides an extremely capable silicon response simulation package.
- trf toolkit contains a well-tested detector model, track & hit classes and Kalman filter fitting code which accounts for energy loss and MCS.
- ftf toolkit provides a fast, efficient, pattern recognition package based on a conformal mapping of hits on topological layers.
- All available from lcd cvs repository.

slicPandora

- slicPandora was successfully used to simulate the response of SiD' (clic_sid_cdr) for the CLiC CDR.
 - Need to study performance with digital SiD HCal, especially after including improved RPC response.
- Number of improvements have been made recently
 - internal restructuring to provide more flexibility in defining input LCIO collections
 - accommodation of changes to pandoraPFA itself
- Need to understand, characterize and optimize selection of algorithms and their ordering.

Vertexing

- - LCFIVertex has been used for the LOI and CDR to provide secondary vertex identification and jet flavor tagging.
 - Following new developments in LCFIVertexPlus and adopting to them as necessary.
 - not being jet-based offers promise of improved performance in multi-jet environments.
 - will require some changes in how events are processed.
 - best to be involved from the beginning.

Detector Optimization

- Not yet settled on final SiD version to be used for the physics benchmarking.
- Some detector optimization studies undertaken.
- In addition to the baseline, some alternatives to be studied.
 - Will not perform all the benchmarks with all the variants.
 - May only perform subdetector performance characterization for some detectors.

Detector Design

• Baseline:

- sid_dbd : LOI geometry with more realistic detector descriptions (~sidloi3).
- Option 1:
 - sid_dbdopt: Detector optimized for 1TeV operations.
- Option 2:
 - sid_dbdspt: Silicon Pixel Tracker option.
- Option 3:
 - sid_dbdsci: Analog scintillator HCal
- Others?

Detector Optimization First iteration of optimization ongoing.

- sidloi3 HCal +/- 1λ

- Processed e⁺e⁻ → WW → qq²µν_µ, ZZ → qqνν through full simulation. reconstruction, analysis chain using grid tools.
 - Use W/Z separation as performance metric.
- Useful debugging exercise, thanks to the efforts of Jan, Stephane, Philipp and Jeremy.
- Detectors to be frozen soon and production simulation to start.

The Grid

- SiD intends to make full use of Grid Storage Element and computing resources for the DBD detector response simulation and physics benchmarking exercise.
- Full tool chain using Dirac has been developed and successfully used to complete the CLiC CDR exercise.
- Identifying OSG resources.
- Need to run full sim/reco chain on small sample of benchmark events to identify scope of resources needed.

DBD Deliverables

- Results expected for inclusion in DBD
 - Full simulation of realistic detector design including support structures.
 - Overlay of correct admixture of expected beamrelated backgrounds.
 - Full tracker hit digitization and ab initio track finding and fitting.
 - Digital RPC signal simulation, including cross-talk, noise & inefficiencies.
 - Full reconstruction using slicPandora & LCFIVertex (LCFIPlus if available)

Benchmarking: Common

- 2-4-6-8 fermion SM Background:
 - MC event generation is complete.
 - ee \rightarrow 2f and ee \rightarrow 4f were generated at DESY;
 - ee \rightarrow 6f, high pT $\gamma\gamma \rightarrow 2f$, $\gamma\gamma \rightarrow 4f$, $e\gamma \rightarrow e+2f$, $e\gamma \rightarrow e+4f$ were generated at SLAC
 - ee \rightarrow ttbb & ttZ 8f backgrounds were generated at KEK.
- low pT, high cross section $\gamma\gamma$ \rightarrow hadrons have been generated at SLAC
- γγ mini-jet events (high pT subprocesses involving quark & gluon constituents of photons) will be generated at SLAC for the DBD
- vvH and ttH signals:
 - DBD generation was completed at SLAC and KEK, respectively.
- The WW signal was generated when the ee→4f background was generated at DESY; alternate initial state polarizations and anomalous TGC's will be simulated through reweighting.
- All MC event generation stdhep files are stored on the grid with an ftp accessible copy on SLAC NFS.

Benchmarking:SiD

- The MC event generation stdhep files each of which are generated with 100% initial state e-/e+ polarization and contain thousands of events are mixed together at SLAC to produce smaller stdhep files with 500 events each and 80% /20% e-/e+ polarization. These smaller files serve as input to the SiD full simulation and reconstruction software which can be run either on the SLAC linux batch farm or on the grid.
- 2-4-6-8 fermion SM Background: a little bit of everything is being fully simulated – just as was done for the LOI; more fully simulated background events can be produced at the request of the benchmarking group
- low pT, high cross section $\gamma\gamma \rightarrow$ hadrons will be overlaid on all fully simulated events
- SiD will use the LOI MC event generation stdhep files for the ttbar signal and background when it reanalyzes this benchmark with the DBD detector.

and beyond...

- Techniques developed for SiD @ ILC and CLiC can also be used for Muon Collider studies.
- Some additions to slic and GeomConverter specific to MuC
 - e.g. tapered endcap calorimeters
- Background overlay and timing cut functionality developed and tested at CLiC directly applicable.
- Will support MuC studies leading up to and at the Snowmass 2013 meeting.

Snowmass 2013

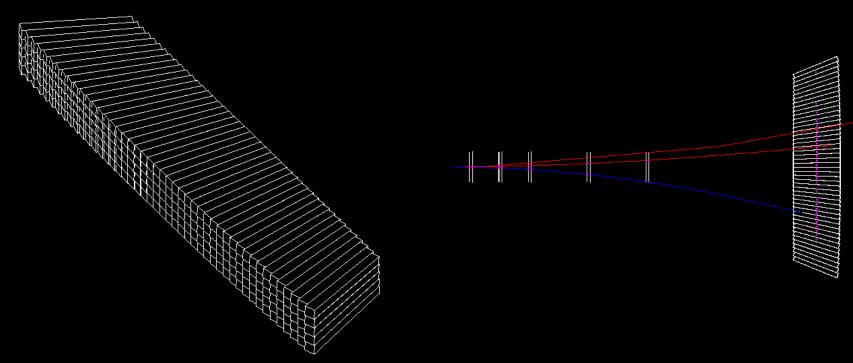
- - The APS DPF will host a meeting in Snowmass in the late spring of next year.
 - The ALCPG sim/reco group will be providing support for physics and detector studies to be conducted leading up to and during the three-week workshop.
 - To facilitate studies by new groups and individuals we need to make things as easy as possible to generate or access detector designs and MC events.
 - Can't expect everyone to have Grid credentials or belong to the correct VO.
 - Will provide access to event samples via ftp from SLAC nfs disks.

Participated in a software workshop at CERN to identify issues of common concern to the LC community.

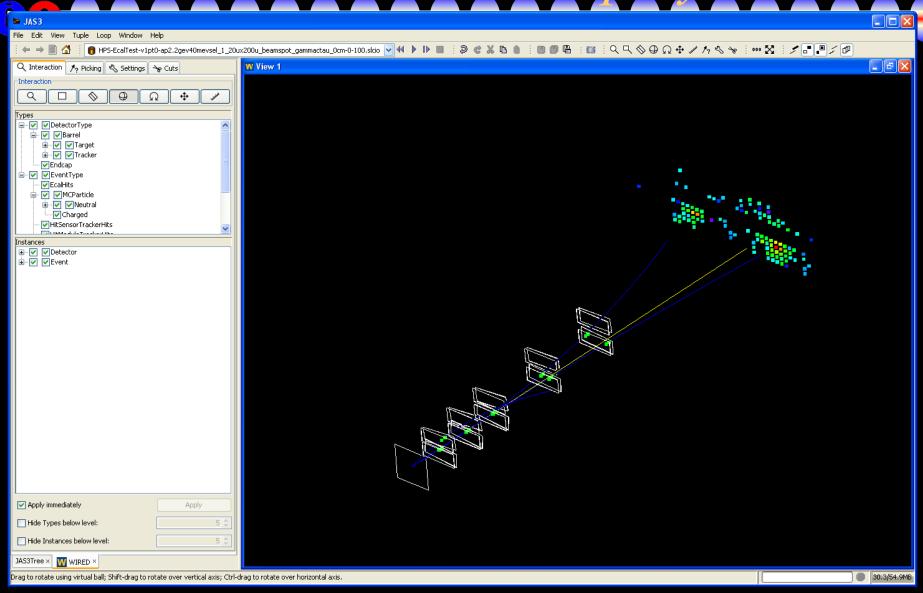
and further beyond...

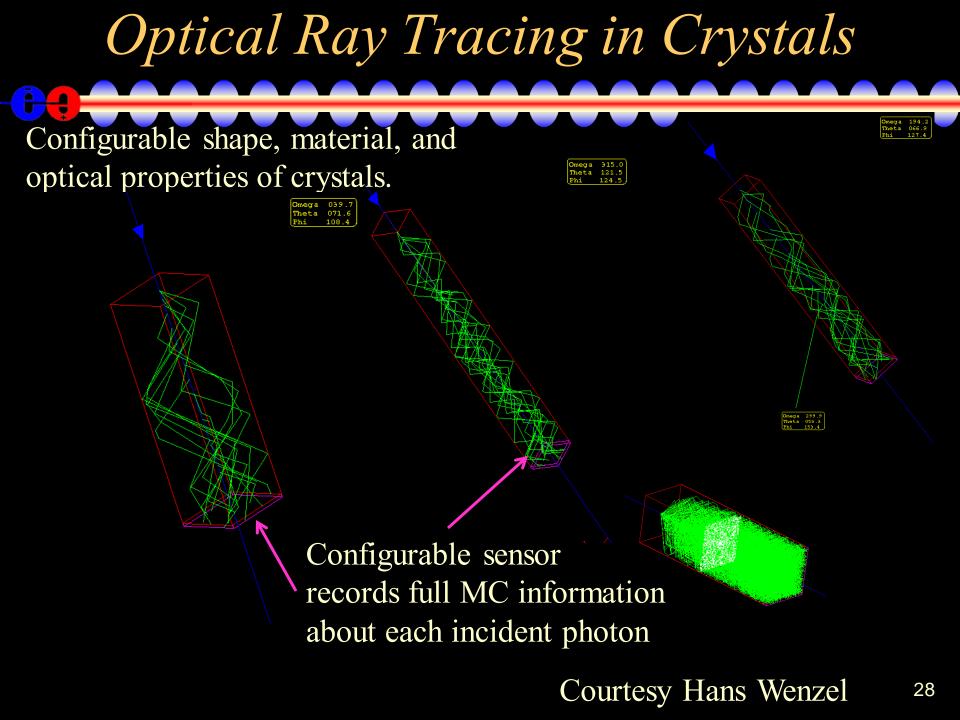
- General consensus to work towards a common simulation application
- Work closely with other efforts (e.g. AIDA WP2)
- Activity to begin in earnest after DBD production.

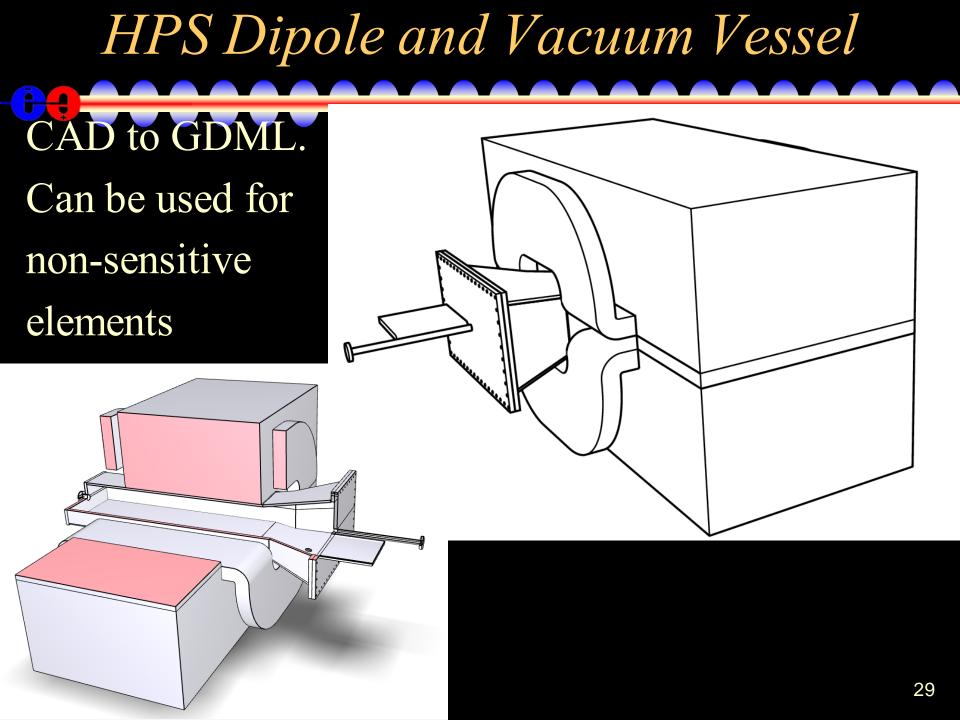
https://indico.cern.ch/conferenceDisplay.py?confId=171897


Other users

- - HPS experiment at Jlab has adopted the lcsim software for its simulation and reconstruction.
 - Installation currently ongoing. Data-taking for test run will take place over next three weeks.


• Crystal array geometry and readout is supported in the compact format.


Simulating the HPS ECal


• Silicon tracker modules individually definable and positionable.

Wired Event Display

CAD-imported elements.

- Current workflow only supports tesselated volumes.
- Wireframe showing tesselation

- Increase in geometry size
- Increase in CPU time.

Summary

- Large amount of work still to be done to complete the DBD physics benchmark analyses.
- Benefitted enormously from the CLiC CDR effort
 - Reconstruction of high energy and high background
 - Automation of Grid submission of jobs
- With event generation ~done, time to begin production.
- Had hoped to run full chain in one go, but will probably start detector response simulation now, giving reconstruction some additional time to improve.