Phenomenology of the Higgs Triplet Model

Kei Yagyu (National Central U)

Collaborators: Mayumi Aoki (Kanazawa U), Shinya Kanemura (U of Toyama), Mariko Kikuchi (U of Toyama)

S. Kanemura, K. Yagyu, arXiv: 1201.6287 [hep-ph] M. Aoki, S. Kanemura, M. Kikuchi. K. Yagyu, arXiv: 1204.1951 [hep-ph]

KILC12, Daegu, Korea, 25th April 2012

Introduction

The Higgs sector is unknown.

- Minimal? or Non-minimal?
- The Higgs boson search is underway at the LHC.
 - The Higgs boson mass is constrained to be

115 GeV < mh < 127 GeV or mh > 600 GeV.

- By the combination with electroweak precision data at the LEP, we may expect that a light Higgs boson exists.

There are phenomena which cannot be explained in the SM.

- Tiny neutrino masses
- Existence of dark matter
- Baryon asymmetry of the Universe

New physics may explain these phenomena above the TeV scale.

- Extended Higgs sectors are often introduced.

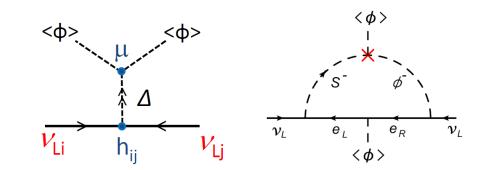
Explanation by extended Higgs sectors

Tiny neutrino masses

- The type II seesaw model
- Radiative seesaw models

(e.g. Zee model)

• Dark matter



- Higgs sector with an unbroken discrete symmetry
- Baryon asymmetry of the Universe
 - Electroweak baryogenesis

Introduced extended Higgs sectors

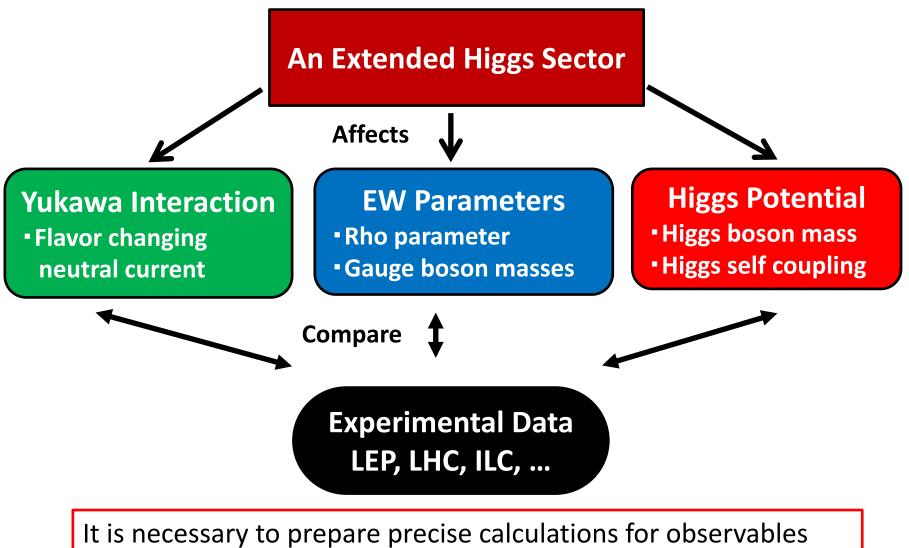
SU(2) doublet Higgs + Singlet [U(1)_{B-L} model]

+ Doublet [Inert doublet model]

+ Triplet [Type II seesaw model], etc...

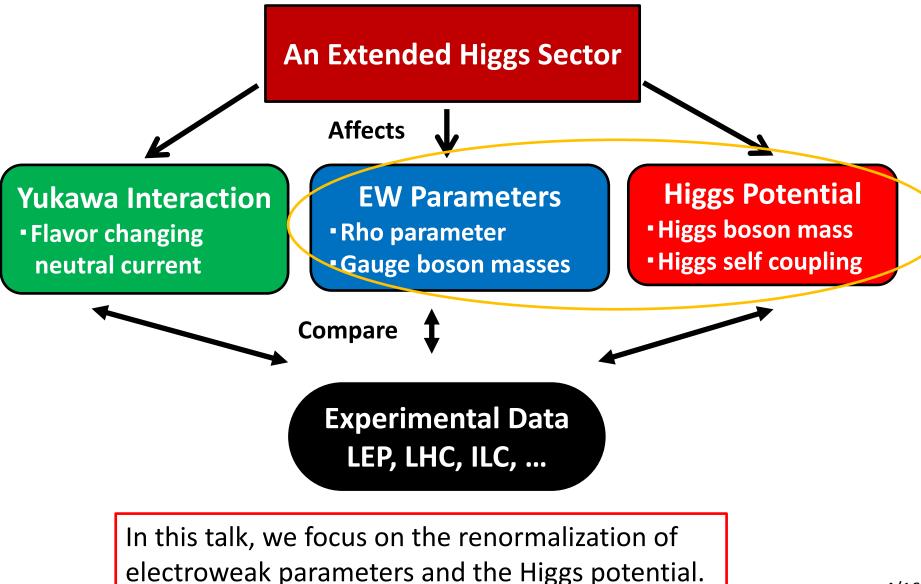
Studying **extended Higgs sectors** is important to understand the **phenomena beyond the SM**.

How we can constrain various Higgs sectors?

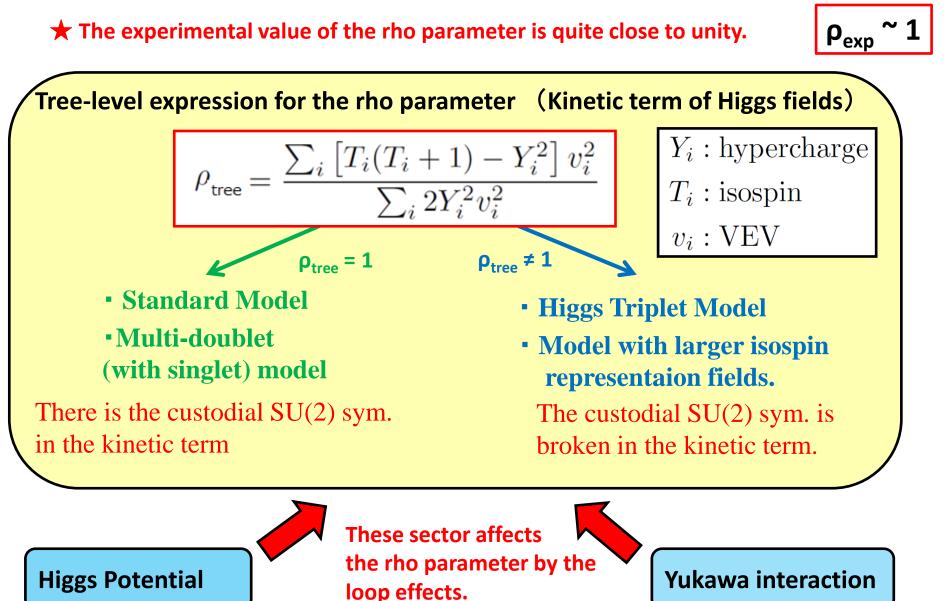


in the Higgs sector in order to distinguish various Higgs sectors.

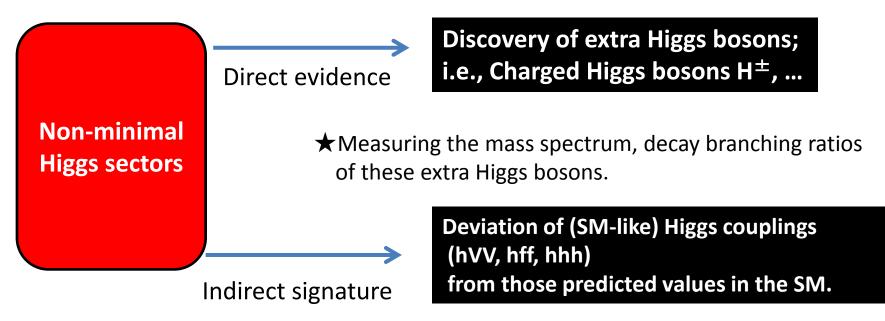
How we can constrain various Higgs sectors?



The electroweak rho parameter



Higgs Potential



★ Once "SM-like" Higgs boson (h) is discovered, precise measurements for the Higgs mass and the triple Higgs coupling turns to be very important.

$$V_{\text{Higgs}} = \frac{1}{2} m_h^2 h^2 + \frac{1}{3!} \lambda_{hhh} h^3 + \frac{1}{4!} \lambda_{hhhh} h^4 + \cdots$$

Precise calculation of these physics quantities is very important to discriminate various Higgs sectors.

The Higgs Triplet Model

The Higgs triplet field Δ is added to the SM.

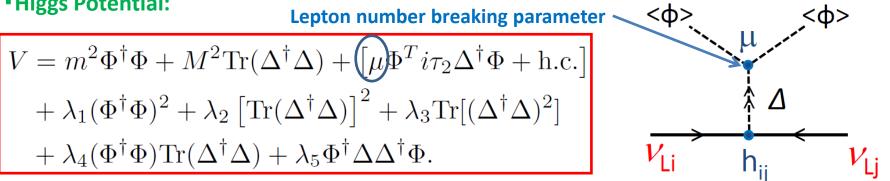
•Neutrino Yukawa interaction:

$$\mathcal{L}_{ extsf{y}} = h_{ij} \overline{L_L^{ci}} \cdot \Delta L_L^j$$

Higgs Potential:

U(1)L SU(2) **U(1)**Y 1/2 Φ 2 0 3 1 -2 Δ

> Cheng, Li (1980); Schechter, Valle, (1980); Magg, Wetterich, (1980); Mohapatra, Senjanovic, (1981).



(SM-like) **h**, (Triplet-like) $H^{\pm\pm}$, H^{\pm} , **H**, **A** •Mass eigenstates:

Neutrino mass matrix

$$(m_{\nu})_{ij} = h_{ij} rac{\mu \langle \phi^0 \rangle^2}{M_{\Delta}^2} = h_{ij} v_{\Delta}$$

 M_{Λ} : Mass of triplet scalar boson. v_{Λ} : VEV of the triplet Higgs

Important predictions (Tree-Level)

★ Rho parameter deviates from unity.

$$\rho_{_{\rm tree}} = \frac{1+\frac{2v_\Delta^2}{v_\Phi^2}}{1+\frac{4v_\Delta^2}{v_\Phi^2}} \simeq 1-\frac{2v_\Delta^2}{v_\Phi^2}$$

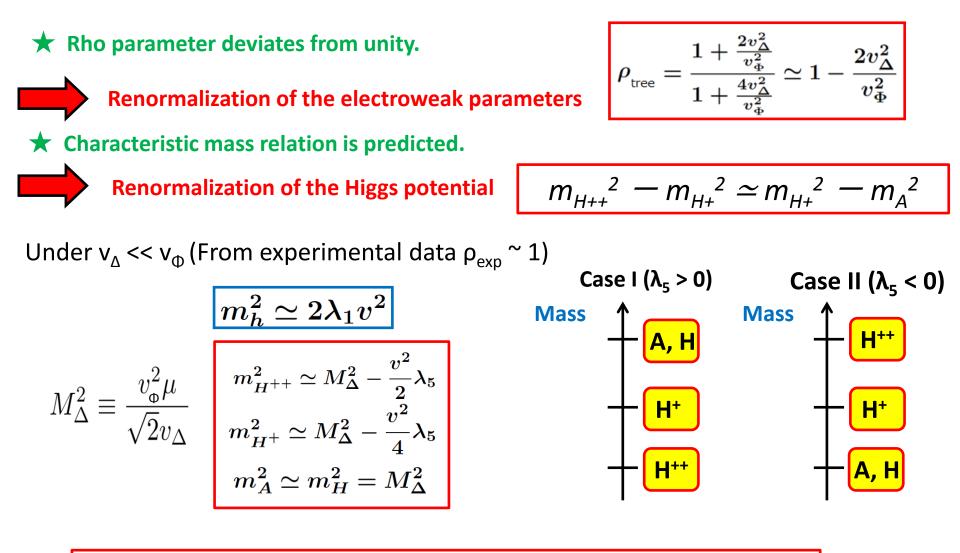
★ Characteristic mass relation is predicted.

$$m_{H^{++}}^2 - m_{H^+}^2 \simeq m_{H^+}^2 - m_A^2$$

$$\begin{aligned} & \text{Jnder } \mathbf{v}_{\Delta} << \mathbf{v}_{\Phi} \, (\text{From experimental data } \rho_{\text{exp}} \sim 1) \\ & \text{Case I} \, (\lambda_{5} > 0) \\ & \text{Mass} \quad \begin{pmatrix} \mathbf{m}_{h}^{2} \simeq 2\lambda_{1} v^{2} \\ \mathbf{m}_{h}^{2} \simeq 2\lambda_{1} v^{2} \\ & \mathbf{m}_{h}^{2} \simeq m_{h}^{2} = M_{\Delta}^{2} \\ & \mathbf{m}_{h}^{2} \simeq m_{H}^{2} = M_{\Delta}^{2} \end{aligned} \qquad \begin{aligned} & \text{Case II} \, (\lambda_{5} < 0) \\ & \text{Mass} \quad \mathbf{m}_{h}^{2} = \mathbf{m}_{h}^{2} \\ & \mathbf{m}_{h}^{2} \simeq m_{H}^{2} = M_{\Delta}^{2} \end{aligned}$$

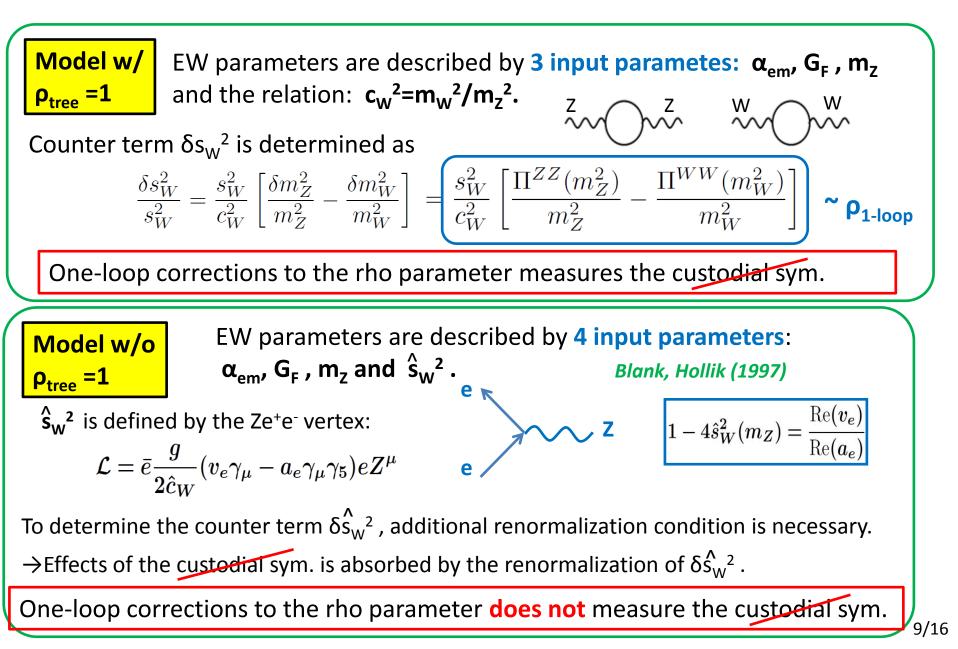
How these predictions are modified by the radiative corrections?

Important predictions (Tree-Level)

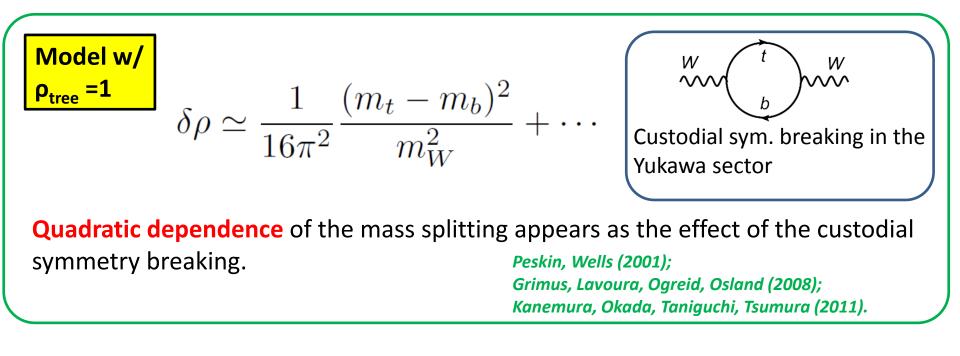


We first discuss renormalization of the EW parameters.

Model w/ ρ_{tree} = 1 and Model w/o ρ_{tree} = 1



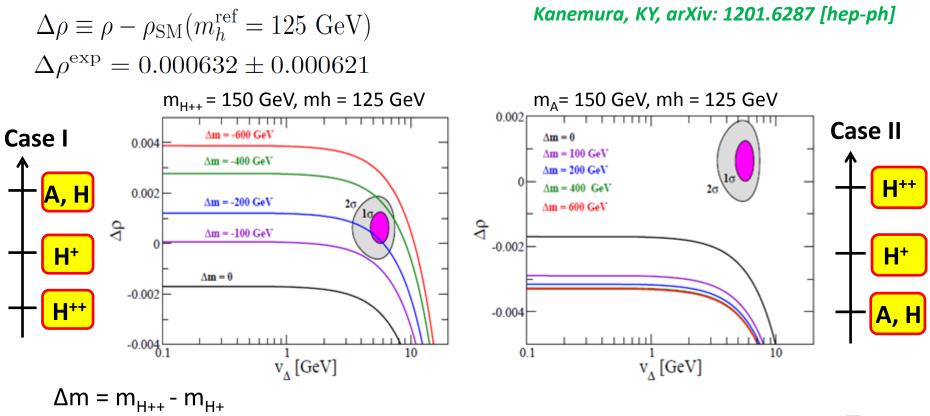
Radiative corrections to the rho parameter



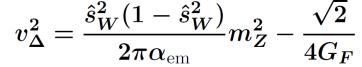
$$\begin{array}{ll} \text{Model w/o} \\ \textbf{p}_{\text{tree}} = \textbf{1} \end{array} \qquad \qquad \delta \rho \simeq \frac{1}{16\pi^2} \ln \frac{m_t}{m_b} + \cdots \end{array}$$

Quadratic dependence of the mass splitting disappears by the renormalization, and only logarithmic dependence is remained.

One-loop corrected rho parameter in the HTM



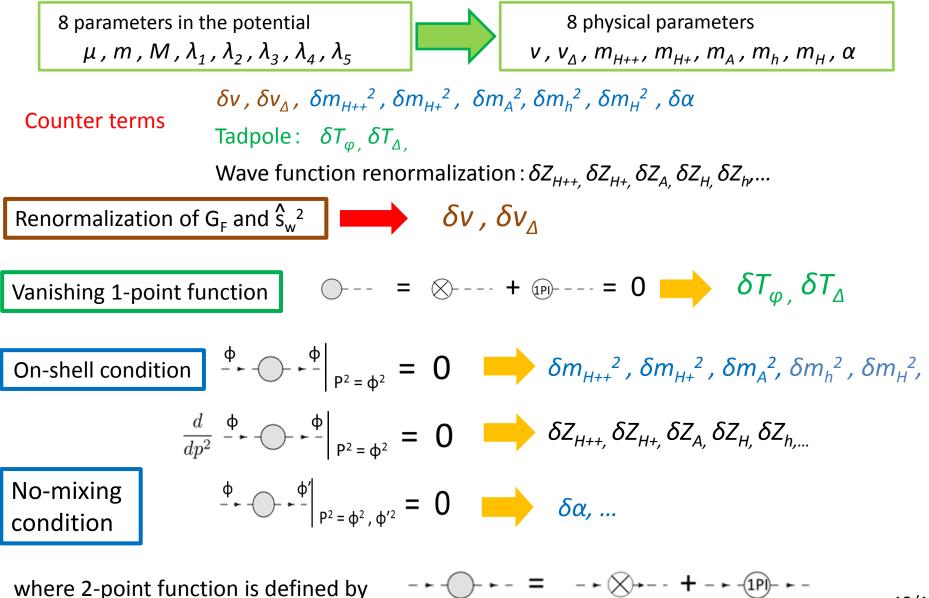
 v_{Δ} is calculated by the tree level formula:



In Case I, $mH^{++} = 150 \text{ GeV}$, 100 GeV < $|\Delta m|$ < 400 GeV , 3 GeV < $v\Delta$ < 8 GeV is favored, while Case II is highly constrained by the data.

Renormalization of the Higgs potential

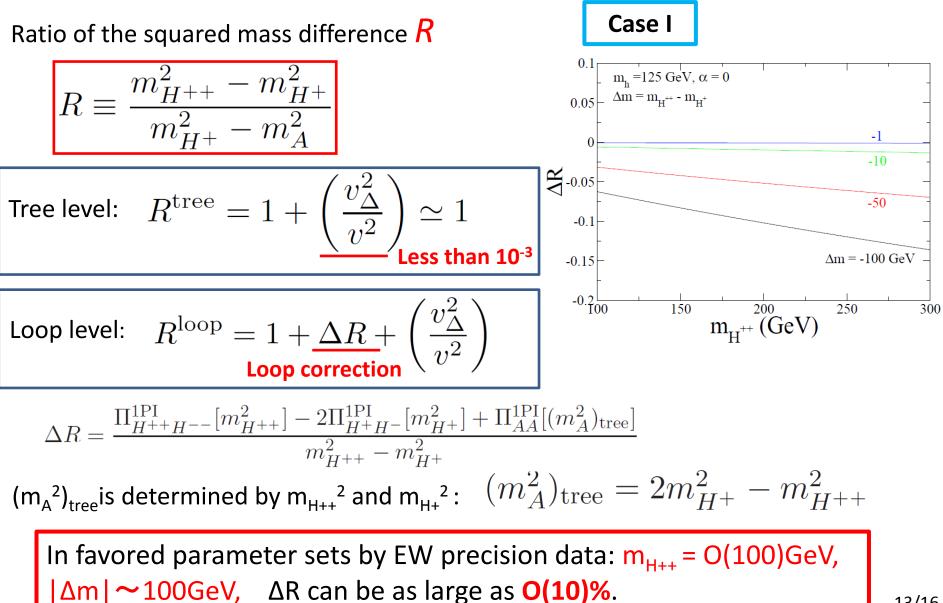
Aoki, Kanemura, Kikuchi, KY, arXiv: 1204.1951



12/16

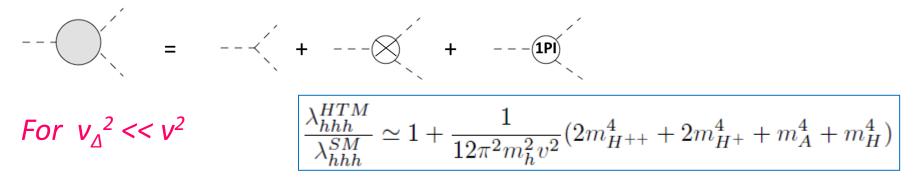
Radiative corrections to the mass spectrum

Aoki, Kanemura, Kikuchi, KY, arXiv: 1204.1951

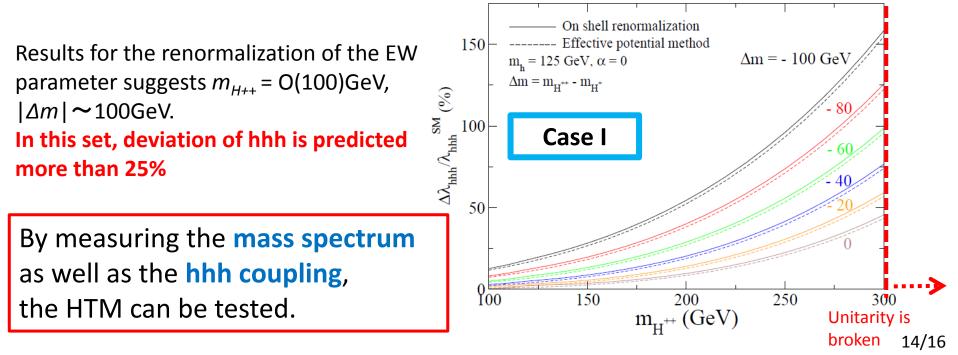


One-loop corrected hhh coupling Aoki, Kanemura, Kikuchi, KY, arXiv: 1204.1951

On-shell renormalization of the hhh coupling:

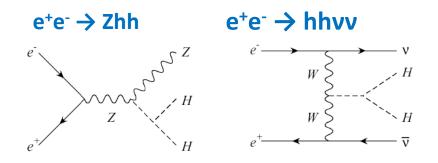


Quartic mass dependence of Δ -like Higgs bosons appears to the hhh coupling \Rightarrow Non-decoupling property of the Higgs sector.



Measuring hhh and the mass spectrum at the ILC

Measuring the hhh coupling



O(10)% precision may be expected.

Recent analysis was given by Suehara-san's talk.

е

e

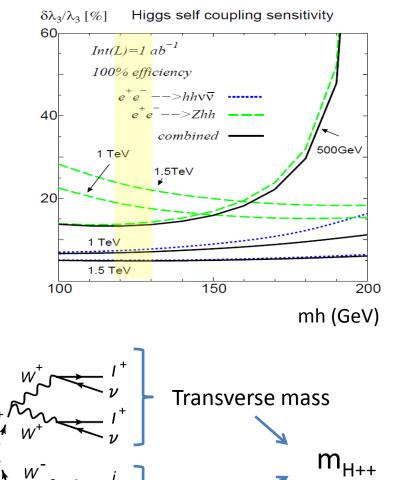
γ, Z

Measuring the mass spectrum

Case I

Ex. $e^+e^- \rightarrow H^{++}H^{--} \rightarrow W^+W^+W^-W^ \rightarrow I^+I^+4jet + missing$

Yasui, Kanemura, Kiyoura, Odagiri, Okada, Senaha, Yamashita, hep-ph/0211047



Invariant mass

15/16

Summary

- Precise calculations of EW parameters as well as Higgs couplings (hhh, hVV, hff) are important to discriminate various Higgs sectors.
- The important predictions in the Higgs Triplet Model:

$$\rho_{_{\rm tree}} = \frac{1 + \frac{2v_\Delta^2}{v_\Phi^2}}{1 + \frac{4v_\Delta^2}{v_\Phi^2}} \simeq 1 - \frac{2v_\Delta^2}{v_\Phi^2}$$

$$m_{H^{++}}^2 - m_{H^+}^2 \simeq m_{H^+}^2 - m_A^2$$

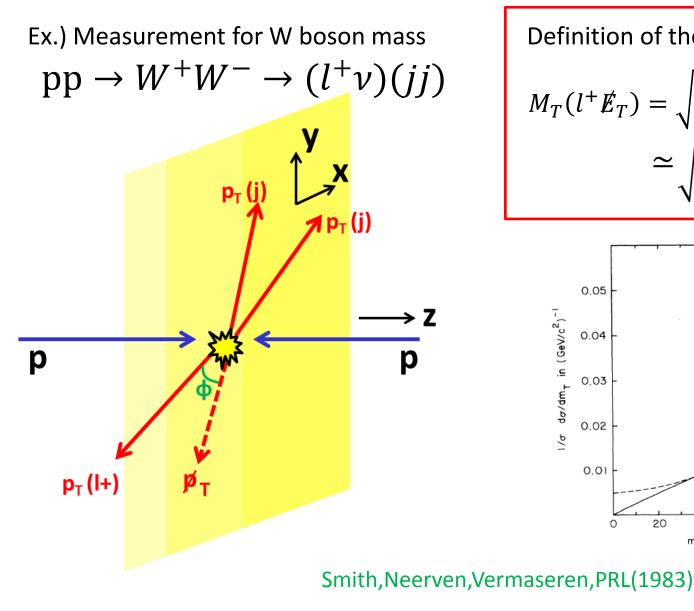
- Renormalization of the EW parameters
 - 4 input parameters (not 3 as the SM) are necessary in to describe the EW parameters.
 - ⇒ mA > mH+ > mH++ with ∆m=O(100) GeV is favored.
- Renormalization of the Higgs potential
 - One-loop corrected mass spectrum: ΔR = O(10)%
 - One-loop corrected hhh coupling : deviation from the SM

prediction can be as large as O(100) %

• These observables may be able to measured at the ILC.

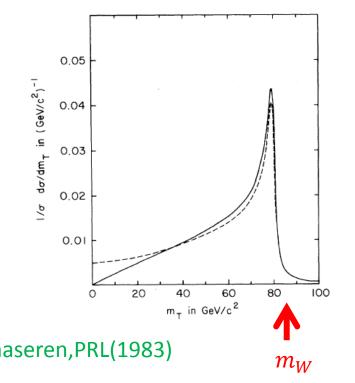
Back up slides

Transverse mass distribution

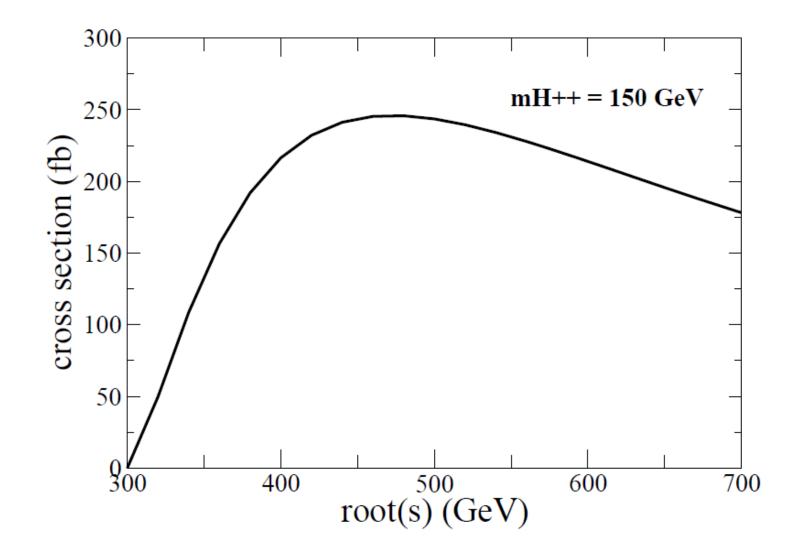


Definition of the transverse mass

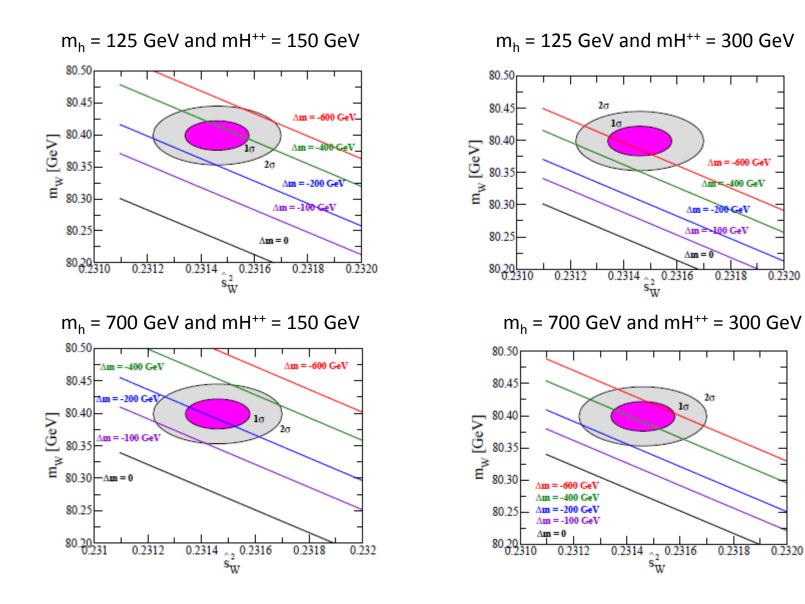
$$M_T(l^+ \not\!\!E_T) = \sqrt{\left(P_T^{l+} + p_T\right)^2}$$
$$\simeq \sqrt{2P_T^{l+} \not\!\!E_T(1 - \cos\phi)}$$



Cross section of $e^+e^- \rightarrow H^{++}H^{--}$



Large mh and mH⁺⁺ case (Case I)



Renormalized p and m_w

$$\begin{split} \Delta r_{\rho \neq 1} &= \frac{\Pi_T^{WW}(0) - \Pi_T^{WW}(m_W^2)}{m_W^2} + \frac{d}{dp^2} \Pi_T^{\gamma \gamma}(p^2) \Big|_{p^2 = 0} + \frac{2\hat{s}_W}{\hat{c}_W} \frac{\Pi_T^{\gamma Z}(0)}{m_Z^2} + \delta_{VB} \\ &+ \frac{\hat{c}_W}{\hat{s}_W} \frac{\Pi_T^{\gamma Z}(m_Z^2)}{m_Z^2} + \delta'_V \end{split}$$

One-loop corrected ρ and m_{W} are given by:

$$\rho = \frac{\pi \alpha_{\rm em}}{\sqrt{2}G_F m_Z^2 \hat{s}_W^2 \hat{c}_W^2} (1 + \Delta r) \quad , \quad m_W^2 = \frac{\pi \alpha_{\rm em}}{\sqrt{2}G_F \hat{s}_W^2} (1 + \Delta r)$$

Approximately formulae of Δr

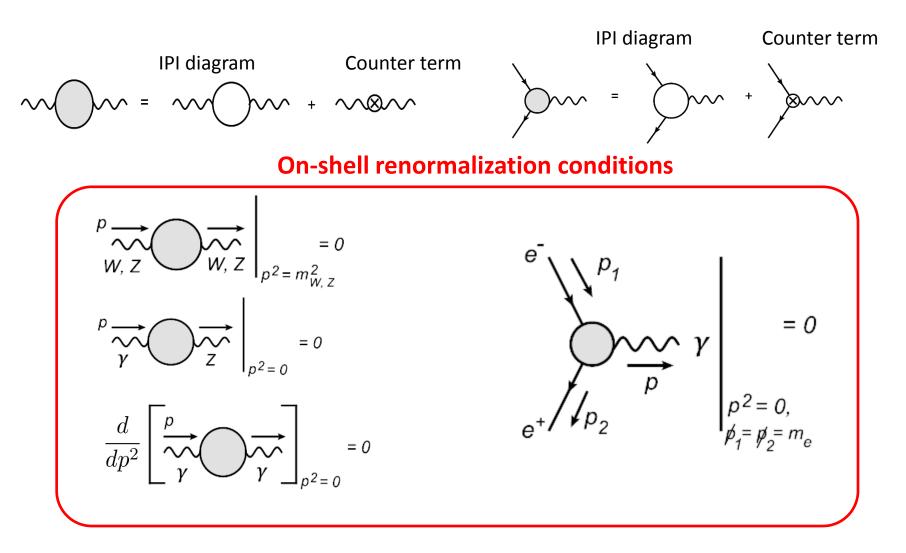
$$\begin{array}{ll} \text{Case I:} & \Delta r \simeq \frac{g^2}{16\pi^2} \left(\ln m_{H^+} + \ln m_A - 2\ln m_{H^{++}} \right) + \cdots \\ \text{Case II:} & \Delta r \simeq \frac{g^2}{16\pi^2} \left(\ln m_{H^{++}} + \ln m_{H^+} - 2\ln m_{H^{++}} \right) + \cdots \\ \text{By using} & m_{H^{++}}^2 - m_{H^+}^2 = m_{H^+}^2 - m_A^2 \\ \text{Case I:} & \Delta r \simeq \frac{g^2}{16\pi^2} \ln \frac{\sqrt{2}(|\Delta m|^2 + 2|\Delta m|m_{\text{lightest}} + m_{\text{lightest}}^2)}{m_{\text{lightest}}^2} + \cdots \end{array}$$

with $m_{lightest} = mH^{++}$

Case II:
$$\Delta r \simeq \frac{g^2}{16\pi^2} \ln \frac{1 + \sqrt{2} + m_{\text{lightest}}^2 / (4\Delta m^2)}{2 + \sqrt{2} + m_{\text{lightest}}^2 / (4\Delta m^2)} + \cdots$$

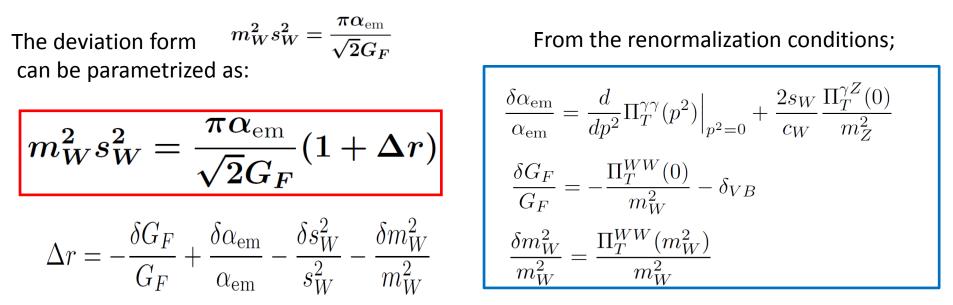
with $m_{lightest} = mA$

On-shell renormalization scheme



From these 5 conditions, 5 counter terms (δg , $\delta g'$, δv , δZ_B , δZ_W) are determined.

Radiative corrections to the EW parameters



In models with $\rho = 1$ at the tree level, s_w^2 is the dependent parameter. Therefore, the counter term for δs_w^2 is given by the other conditions.

This part represents the violation of the custodial symmetry by the sector which is running in the loop.

Y=1 Higgs Triplet Model:Kinetic term

$$\mathcal{L}_{\rm kin} = (D_{\mu}\Phi)^{\dagger} (D^{\mu}\Phi) + {\rm Tr}[(D_{\mu}\Delta)^{\dagger} (D^{\mu}\Delta)]$$

Covariant Derivative

$$\langle \Phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_{\Phi} \end{pmatrix} \quad \langle \Delta \rangle = -\frac{1}{\sqrt{2}} \langle \Delta \rangle = -$$

 $D_{\mu}\Phi = \left(\partial_{\mu} + i\frac{g}{2}\tau^{a}W_{\mu}^{a} + i\frac{g'}{2}B_{\mu}\right)\Phi \qquad D_{\mu}\Delta = \partial_{\mu}\Delta + i\frac{g}{2}[\tau^{a}W_{\mu}^{a}, \Delta] + ig'B_{\mu}\Delta$

$$\Delta \rangle = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 0 & 0\\ v_{\Delta} & 0 \end{array} \right)$$

Masses for Gauge bosons

$$m_W^2 = \frac{g^2}{4}(v_{\Phi}^2 + 2v_{\Delta}^2) \qquad m_Z^2 = \frac{g^2}{4\cos^2\theta_W}(v_{\Phi}^2 + 4v_{\Delta}^2)$$

p parameter

$$\rho_{\scriptscriptstyle -} \equiv \frac{m_W^2}{m_Z^2 \cos^2 \theta_W} = \frac{1 + \frac{2v_\Delta^2}{v_\Phi^2}}{1 + \frac{4v_\Delta^2}{v_\Phi^2}} \simeq 1 - \frac{2v_\Delta^2}{v_\Phi^2}$$

The Higgs Triplet Model (HTM)

The Higgs potential

$$V = m^{2} \Phi^{\dagger} \Phi + M^{2} \operatorname{Tr}(\Delta^{\dagger} \Delta) + \left[\mu \Phi^{T} i \tau_{2} \Delta^{\dagger} \Phi + \text{h.c.} \right]$$

+ $\lambda_{1} (\Phi^{\dagger} \Phi)^{2} + \lambda_{2} \left[\operatorname{Tr}(\Delta^{\dagger} \Delta) \right]^{2} + \lambda_{3} \operatorname{Tr}[(\Delta^{\dagger} \Delta)^{2}]$
+ $\lambda_{4} (\Phi^{\dagger} \Phi) \operatorname{Tr}(\Delta^{\dagger} \Delta) + \lambda_{5} \Phi^{\dagger} \Delta \Delta^{\dagger} \Phi.$

$$egin{aligned} \Phi &= \left[egin{aligned} arphi^+ & \ rac{1}{\sqrt{2}}(arphi+v+i\chi) \end{array}
ight] \ \Delta &= \left(egin{aligned} rac{\Delta^+}{\sqrt{2}} & \Delta^{++} \ \Delta^0 & -rac{\Delta^+}{\sqrt{2}} \end{array}
ight) \ \Delta^0 &= rac{1}{\sqrt{2}}(\delta+v_\Delta+i\eta) \end{aligned}$$

There are 10 degrees of freedom of scalar states.

$$\Delta^{\pm\pm} = H^{\pm\pm}$$

$$\begin{pmatrix} \varphi^{\pm} \\ \Delta^{\pm} \end{pmatrix} = \begin{pmatrix} \cos\beta_{\pm} & -\sin\beta_{\pm} \\ \sin\beta_{\pm} & \cos\beta_{\pm} \end{pmatrix} \begin{pmatrix} w^{\pm} \\ H^{\pm} \end{pmatrix} \quad \tan\beta_{\pm} = \frac{\sqrt{2}v_{\Delta}}{v}$$

$$\begin{pmatrix} \chi^{0} \\ \eta^{0} \end{pmatrix} = \begin{pmatrix} \cos\beta_{0} & -\sin\beta_{0} \\ \sin\beta_{0} & \cos\beta_{0} \end{pmatrix} \begin{pmatrix} z^{0} \\ A^{0} \end{pmatrix} \quad \tan\beta_{0} = \frac{2v_{\Delta}}{v}$$

$$\begin{pmatrix} \varphi^{0} \\ \delta^{0} \end{pmatrix} = \begin{pmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{pmatrix} \begin{pmatrix} h^{0} \\ H^{0} \end{pmatrix} \quad \tan2\alpha = \frac{v_{\Delta}}{v} \frac{2v^{2}(\lambda_{4} + \lambda_{5}) - 4M_{\Delta}^{2}}{2v^{2}\lambda_{1} - M_{\Delta}^{2} - v_{\Delta}^{2}(\lambda_{2} + \lambda_{3})}$$

10 scalar states can be translated to 3 NG bosons, 1 SM-like scalar boson and 6 Δ -like scalar bosons.

 $^{\cdot}$ 6 Δ-like scalar bosons → H^{±±}, H[±], A and H Doubly-charged Singly-charged CP-odd CP-even

Custrodial Symmetry

The Higgs doublet can be written by the 2×2 matrix form

$$\Sigma \equiv (\tilde{\Phi}, \Phi) = \begin{pmatrix} -\phi_0^* & \phi^+ \\ \phi^- & \phi_0 \end{pmatrix}$$
$$\mathcal{L}_{\rm kin} = \frac{1}{2} \operatorname{Tr} \left[(\tilde{D}_\mu \Sigma)^\dagger (\tilde{D}^\mu \Sigma) \right] \quad \tilde{D}_\mu \Sigma = \partial_\mu \Sigma + i \frac{g}{2} \tau \cdot W_\mu \Sigma - i \frac{g'}{2} B_\mu \Sigma \tau_3$$

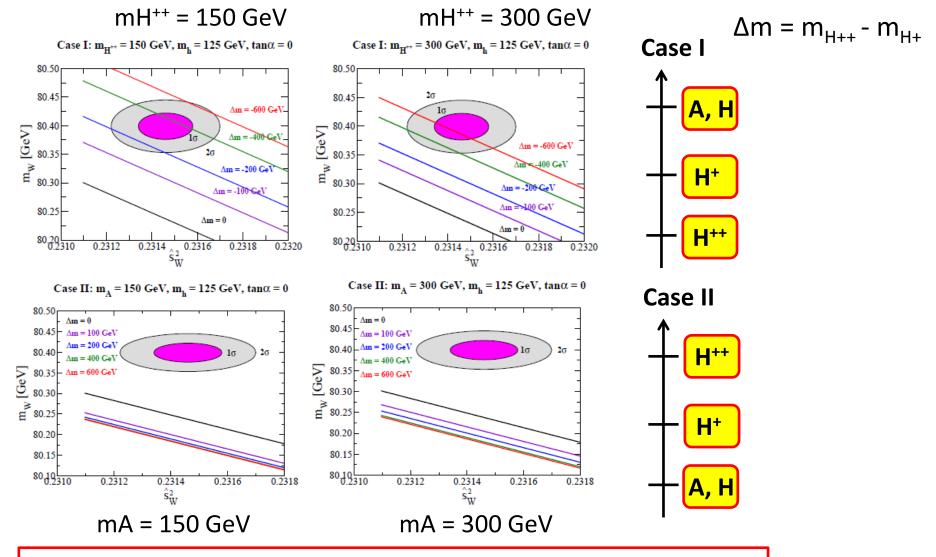
In the limit of g' \rightarrow 0, The kinetic term is invariant under SU(2)_L × SU(2)_R $\Sigma \rightarrow \Sigma' = U_L \Sigma U_R^{\dagger}$

After the Higgs field gets the VEV, Only the symmetry of $SU(2)_L = SU(2)_R = SU(2)_V$ remain. This $SU(2)_V$ is called the custodial symmetry.

$$\Sigma \to \langle \Sigma \rangle = \frac{v}{\sqrt{2}} \left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array} \right)$$

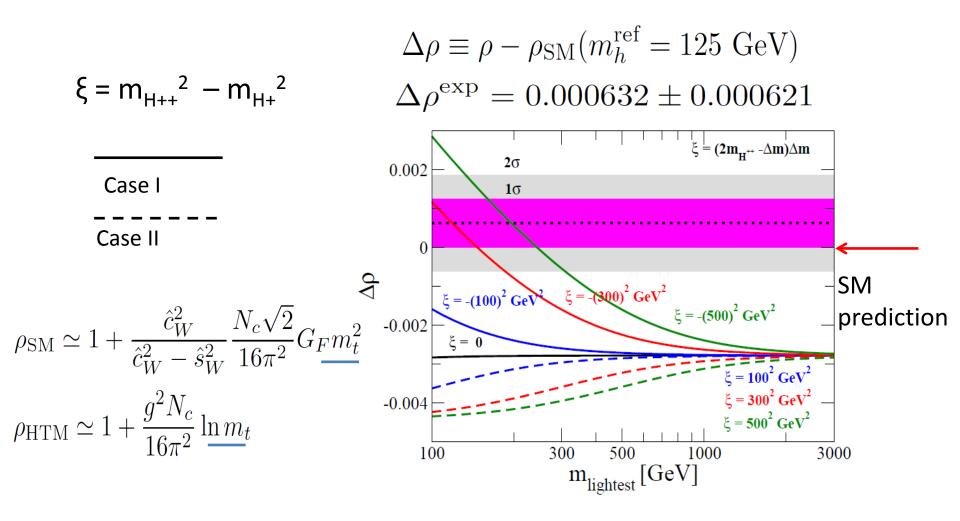
Kanemura, Yagyu, arXiv: 1201.6287 [hep-ph]

Prediction to the W boson mass at the 1-loop level



In Case I, by the effect of the mass splitting, there are allowed regions . Case II is highly constrained by the data.

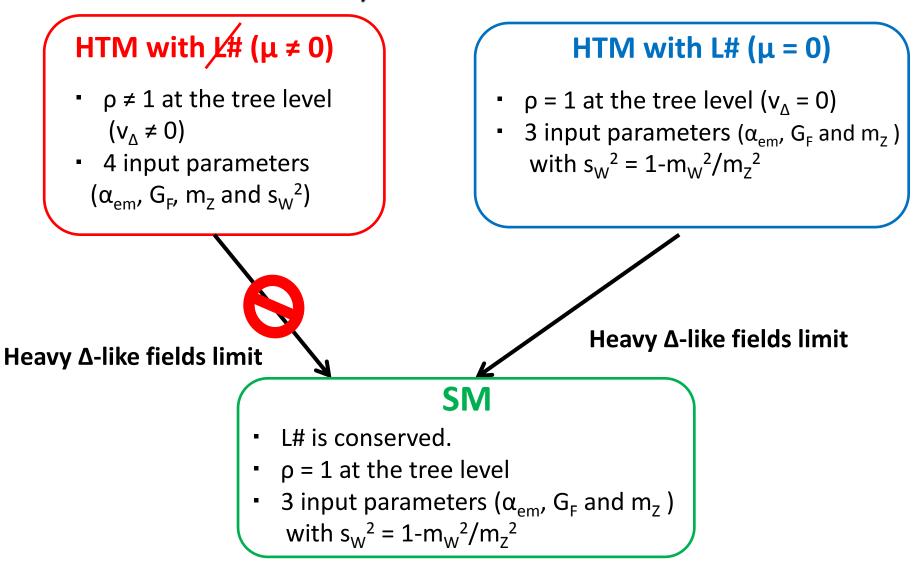
Kanemura, Yagyu, arXiv: 1201.6287 [hep-ph] Heavy mass limit



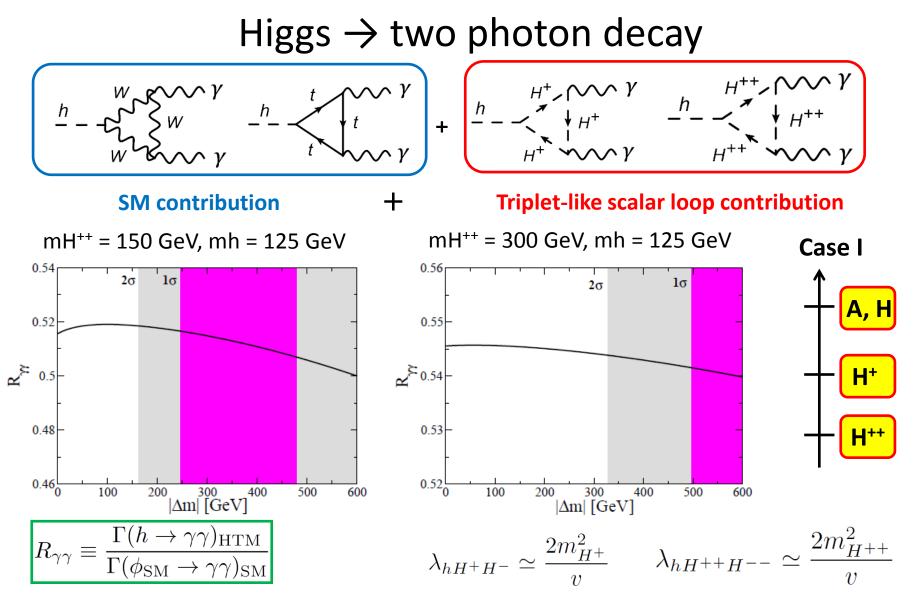
When we take heavy mass limit, loop effects of the triplet-like scalar bosons disappear. Even in such a case, the prediction does not coincide with the SM prediction.

Decoupling property of the HTM

 $\mu\Phi\cdot\Delta^{\dagger}\Phi$

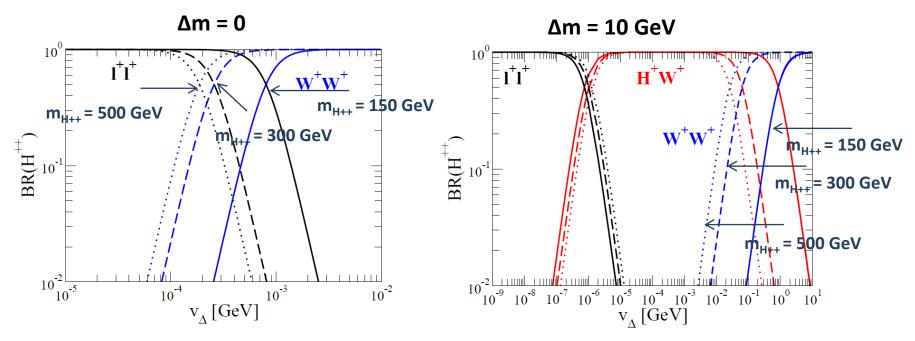


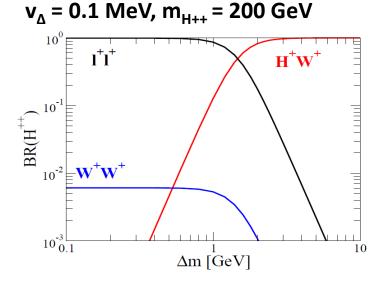
Kanemura, Yagyu, arXiv: 1201.6287 [hep-ph]



The decay rate of $h \rightarrow \gamma \gamma$ is around half in the HTM compared with that in the SM.

Branching ratio of H⁺⁺

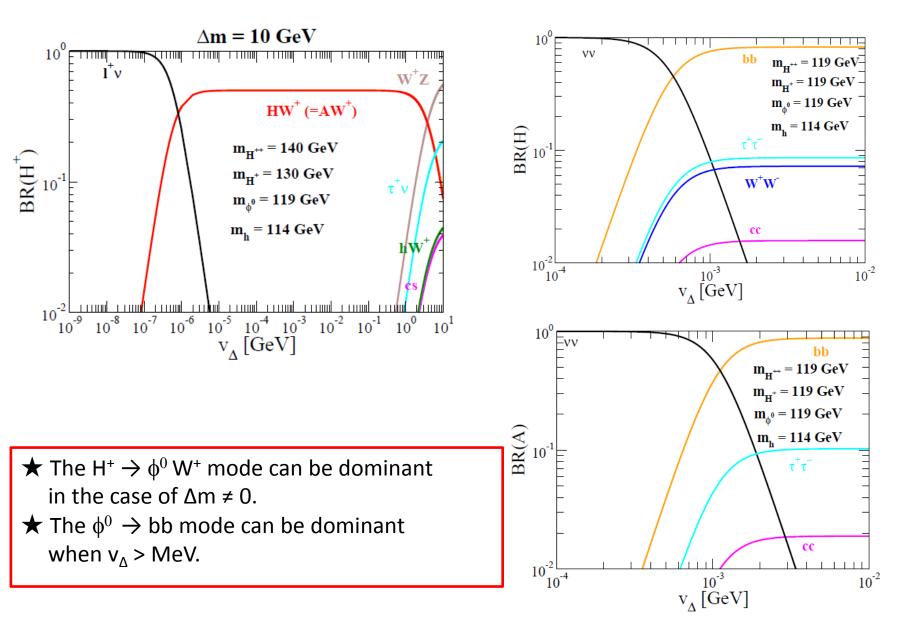




Chakrabarti, Choudhury, Godbole, Mukhopadhyaya, (1998); Chun, Lee, Park, (2003); Perez, Han, Huang, Li, Wang, (2008); Melfo, Nemevsek, Nesti, Senjanovic, (2011)

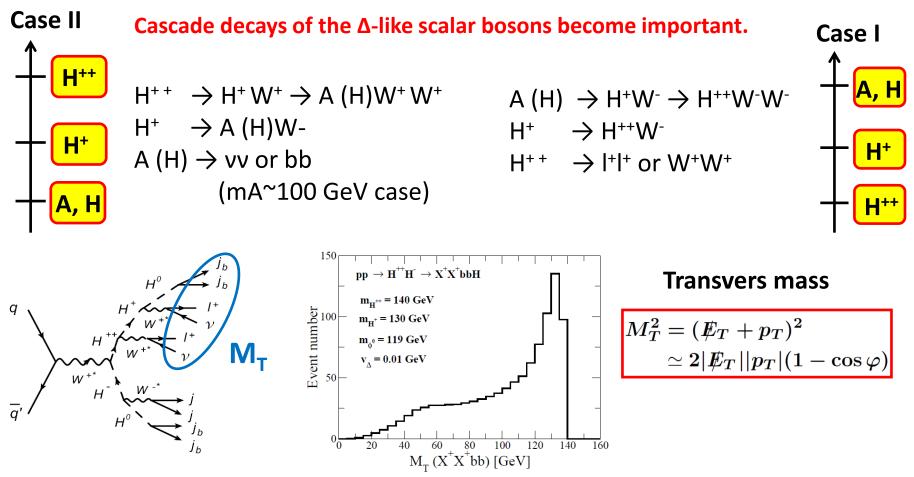
Phenomenology of $\Delta m \neq 0$ is drastically different from that of $\Delta m = 0$.

Branching ratios of H^+ , H and A



Phenomenology of HTM with the mass splitting at the LHC

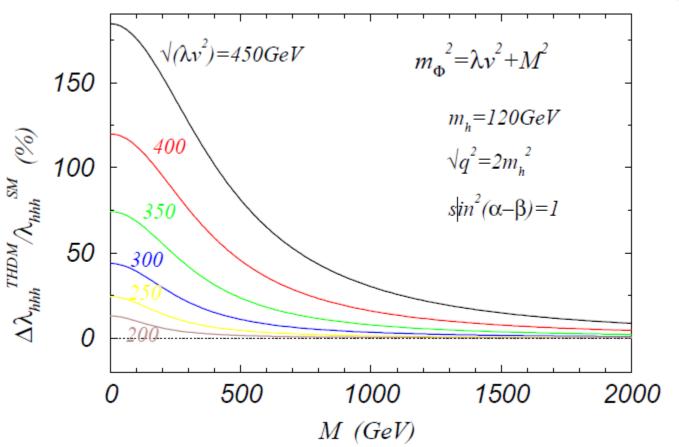
Aoki, Kanemura, Yagyu , Phys. Rev. D, in press (2011)



By using the M_T distribution, we may reconstruct the mass spectrum of Δ -like scalar bosons. \rightarrow We would test the Higgs potential in the HTM.

2HDM の hhh結合

Kanemura, Okada, Senaha, Yuan (2004)



 $m_{\Phi}^2 = \lambda v^2 + M^2$