# High resolution vertexing based on CMOS sensors with microsecond time stamping

M. Winter (PICSEL team of IPHC-Strasbourg)

- Sensor design : coll. with IRFU-Saclay -

KILC12/Daegu - 24 April 2012

# Contents

- Status of CPS and double-sided development (500 GeV running)
- Motivations for a more accurate timestamp (e.g. 1 TeV running)
- Development of a fast CMOS sensor (AROM) with  $\mu s$  level timestamping
- Application to ILC vertex detector concept
- Example of inner tracker application: the ILD SIT
- Summary

## **CMOS Pixel Sensors for the ILD-VXD**

## • Two types of CMOS Pixel Sensors (CPS):

- ★ Inner layers (≤ 300 cm<sup>2</sup>) : priority to read-out speed & spatial resolution
  → small pixels (16×16 / 80 µm<sup>2</sup>) with binary charge encoding
  → t<sub>r.o.</sub> ~ 50 / 10 µs;  $\sigma_{sp} \leq 3 / 6 µm$ ★ Outer layers (~ 3000 cm<sup>2</sup>) : priority to power consumption and good resolution
  - $\hookrightarrow\,$  large pixels (35  $\!\times$  35  $\mu m^2)$  with 3-4 bits charge encoding
    - $\hookrightarrow$  t<sub>r.o.</sub>  $\sim$  100  $\mu s; \sigma_{sp} \lesssim$  4  $\mu m$
- \* Total VXD instantaneous/average power < 700/20 W (0.35  $\mu m$  process)

## • 2-sided ladder concept for inner layer :

★ Square pixels (16×16  $\mu m^2$ ) on internal ladder face ( $\sigma_{sp}$  < 3  $\mu m$ ) & Elongated pixels (16×80  $\mu m^2$ ) on external ladder face (t<sub>r.o.</sub> ~ 10  $\mu s$ )

#### • Sensor final prototypes : fabricated in Q4/2011

- \* MIMOSA-30: inner layer prototype with 2-sided read-out  $\triangleright$   $\triangleright$   $\triangleright$ 
  - ← one side : 256 pixels (16×16  $\mu m^2$ ) other side : 64 pixels (16×64  $\mu m^2$ )

\* MIMOSA-31: outer layer prototype







|>

## **2-Sided Ladder Beam Test Results**

#### • PLUME prototype-2010 tested at SPS in Nov. 2011:

- \* Beam telescope : 2 arms, each composed of 2 MIMOSA-26 sensors
- \* DUT : 1 PLUME ladder prototype (0.6 %  $X_0$ )
  - $\hookrightarrow$  6 MIMOSA-26 sensors on each ladder face (8 Mpixels)
- \* CERN-SPS beam :  $\gtrsim$  100 GeV " $\pi^-$  " beam
- st BT (track extrapolation) resolution on DUT :  $\sim$  1.8  $\mu m$
- \* Studies with PLUME perpendicular and inclined ( $\sim$  36°) w.r.t. beam line



\* Preliminary results (no pick-up observed): combined impact resolution & pointing resolution



• New PLUME prototype under construction with 0.35 % X0 (X-section) >>> beam tests in Q4/2012

## **CMOS Pixel Sensors: Status of Baseline Devt**

- MIMOSA-30: prototype for ILD-VXD innermost layer  $\triangleright$   $\triangleright$   $\triangleright$ \* 0.35 CMOS  $\mu m$  process with high-resistivity epitaxy \* in-pixel CDS, rolling shutter read-out, binary sparsified output \* high resolution side : pixels of 16×16  $\mu m^2 \Rightarrow$  expect  $\sigma_{sp} < 3 \,\mu m$ • 128 columns (discri) & 8 col. (analog) of 256 rows (final scale) • read-out time  $\leq$  50  $\mu s$ \* time stamping side : pixels of 16×64  $\mu m^2 \Rightarrow t_{r.o.} \sim$  10  $\mu s$ • (expect  $\sigma_{sp} \sim$  6  $\mu m$ ) • 128 columns (discri) and 8 col. (analog) of 64 rows (final scale) • lab tests positive : N  $\sim$  15 e<sup>-</sup> ENC & discri. all OK for  $t_{r.o.} = 10 \mu s$ \* beam tests (CERN-SPS) in June/July '12  $\Rightarrow \sigma_{sp}, \epsilon_{det}$ , fake rate MIMOSA-31: prototype for ILD-VXD outer layers  $\triangleright$  $\triangleright$ 
  - \* pixels of  $35 \times 35 \ \mu m^2$  (power saving)
  - \* 48 columns of 64 pixels ended with 4-bit ADC (1/10 of full scale chip)

 $\hookrightarrow$  expect  $\sigma_{sp} \lesssim$  3.5  $\mu m$ 

- \*  $t_{r.o.} \sim 10 \ \mu s$  (1/10 of full scale chip)
- \* beam tests (DESY) in Q1/2013  $\Rightarrow \sigma_{sp}, \epsilon_{det}$ , fake rate





# **Read-Out Acceleration**

- Motivations
  - \* robustness w.r.t. predicted BG rate (keep small inner radius, no Anti-DID, ..)
  - \* standalone inner tracking capability (e.g. soft tracks, SiD ?)
  - $\,$   $\,$  compatibility with high-energy running: beam BG at  $\sqrt{s}$   $\gtrsim$  1 TeV
    - $\hookrightarrow$  beam BG ( $\gtrsim$  1 TeV) at least 3×BG (500 GeV)
- How to accelerate the elongated pixel read-out
  - \* elongated pixel dimensions allow for in-pixel discriminators  $\Rightarrow$  2 faster r.o.  $\triangleright$   $\triangleright$
  - \* read out simultaneously 2 or 4 rows  $\Rightarrow$  2-4 faster r.o./side
  - \* subdivide pixel area in 4-8 sub-arrays read out in //  $\Rightarrow$  2-4 faster r.o.
  - Dash 0.18  $\mu m$  CMOS process needed
    - $\hookrightarrow$  6-7 ML,, design compactness, in-pixel CMOS T, ...
  - \* conservative step: 2 discri./column **end** (22  $\mu m$  wide)  $\Rightarrow$  read out 2 rows simultaneously  $\hookrightarrow$  1st stage improvement: 50/10  $\mu s \mapsto 25/5 \mu s$ (works even with 0.35  $\mu m$  technology)





# 0.18 $\mu m$ Technology Prototyping

- MIMOSA-32 : technology exploration
- > > >
- \* fabricated in Q4/2011 with high resistivity epitaxial layer
- \* numerous different pixels (sensing syst., pre-ampli., elongated pix.), etc.
- \* lab tests under way (<sup>55</sup>Fe source)
  - $\rightarrowtail$  good charge collection observed (high-res epi) but noise high
- \* beam tests foreseen in June-July '12





#### • Next steps

- \* Q3: MIMOSA-22THR1  $\equiv$  MIMOSA-30 translation
  - MIMOSA-22THR1  $\equiv$  same with 2-discri/col.
- \* Q4: AROM-1  $\equiv$  Accelerated Read-Out MIMOSA sensor  $\hookrightarrow$  prototype with in-pixel discrimination
  - SUZE-02 ≡ Zero-Suppression & output buffer circuit

     ⇒ sparsification: 4 rows simultaneous r.o.
- \* 2013: first full scale (1 cm<sup>2</sup>) basic block fabrication
  - $\Rightarrow$  final full size proto. in 2014/15 (ALICE, CBM, AIDA)

# **Characteristics & Variants of MIMOSA & AROM Sensors**

- Assuming MIMOSA and AROM variants to equip innermost and outer layers
  - \* MIMOSA-in and AROM-1 equip innermost layer
  - \* MIMOSA-out and AROM-2 equip outer layers

| Sensor version                       | MIMOSA-in    | MIMOSA-out   | AROM-1    | AROM-2    |
|--------------------------------------|--------------|--------------|-----------|-----------|
| Active area dimensions $[mm^2]$      | 8.7×31.0     | 19.6×31.0    | 10.9×31.0 | 20.8×31.0 |
| Pixel dimensions $[\mu m^2]$         | 17×17        | 34×34        | 17×85     | 34×72     |
| Single point resolution $[\mu m]$    | $\lesssim$ 3 | $\lesssim$ 4 | 5-7       | $\sim$ 10 |
| Read-out time $[\mu s]$              | 50           | $\sim$ 100   | 1.5       | 7         |
| Power consumption: instantaneous [W] | $\sim$ 1.8   | $\sim$ 0.6   | 2.7       | 0.7       |
| average [mW]                         | 36           | 12           | 55        | 14        |

• Power consumption (average value stands for 5 ms long power-on periods  $\equiv$  2% duty cycle):

\* layer 1: 250 W (inst.)  $\Rightarrow$  5 W (average)

- \* layer 2: 120 W (inst.)  $\Rightarrow$  2.4 W (average)
- \* layer 3: 200 W (inst.)  $\Rightarrow$  4 W (average)
- $\Rightarrow$  Complete detector instanteneous power  $\leq$  600 W  $\Rightarrow$  <12 W in average

# **Tracking through ILD-VXD**

• Tracking from outside towards IP combining MIMOSA spatial resolution & AROM timestamp



\* AROM provides 2 or 7  $\mu s$  time stamping



# **VXD - SIT Variant Composed of CPS**

- ILD-SIT : baseline assumes 2 double-sided  $\mu$ strip detector layers
  - \* try understanding if CMOS sensors could improve performance with their high spatial resolution
  - \* advantage : spatial resolution  $\vartriangleright$  4×4  $\mu m^2$  instead of 7×50  $\mu m^2$ 
    - $\Rightarrow$  improved soft track reconstruction (p) and TPC link
    - potentially : material budget, cost
  - \* disadvantage : time resolution  $\triangleright$  7  $\mu s$  instead of O(100)ns Is power a pb ?
- Variant of VXD–SIT design made of CMOS pixel sensors (other variants give similar performances)

| Layer | $\sigma_{sp}$   | $t_{int}$       | Occupancy [%]          | Power              |
|-------|-----------------|-----------------|------------------------|--------------------|
|       | MIMOSA/AROM     | MIMOSA/AROM     | w/o safey factor       | inst./average      |
| VXD-1 | 3 / 5-6 $\mu m$ | 50 / 2 $\mu s$  | 0.9(2.6) / 0.1(0.3)    | 250/5 W            |
| VXD-2 | 4 / 10 $\mu m$  | 100 / 7 $\mu s$ | 0.3(0.9) / 0.04(0.1)   | 120/2.4 W          |
| VXD-3 | 4 / 10 $\mu m$  | 100 / 7 $\mu s$ | 0.06(0.2) / 0.01(0.03) | 200/4 W            |
| SIT-1 | 4 / 15 $\mu m$  | 100 / 7 $\mu s$ | $\lesssim$ 0.01        | $\sim$ 1.3 kW/26 W |
| SIT-2 | 4 $\mu m$       | 100 $\mu s$     | $\lesssim$ 0.01        | $\sim$ 2.5 kW/50 W |

- ILD-SIT : power consumption (average  $\lesssim$  100 W for  $\gtrsim$  4 m  $^2$  coverage) seems affordable
  - $\Rightarrow$  need benchmark event study with beam BG to evaluate track reconstruction performance

# SUMMARY

- Mature sensor architecture complies with all VXD specifications at  $\sqrt{s}$ =500 GeV :
  - $\circ\,$  architecture based on sensors realised for EUDET-BT and STAR-PXL (0.35  $\mu m$  CMOS process)
  - based on 2-sided ladder concept  $\Rightarrow$  hit resolution/timestamp on opposite ladder sides (PLUME project)
  - $\circ\,$  innermost layer : < 3  $\mu m$  and  $\lesssim$  10  $\mu s$  (upgradable to  $\lesssim$  5  $\mu s$  with 2 discri/col)
  - $\circ\;$  outer layers : < 4  $\mu m$  (ADCs not yet tested) and  $\sim$  100  $\mu s$
  - VXD power consumption : < 700 W (inst.) / < 20 W (average)
  - final prototypes fabricated  $\Rightarrow$  tests under way : MIMOSA-30(in) & MIMOSA-31(out)
  - $\circ$  validation of concept  $\pm$  completed in 2012 with 2-sided ladder (PLUME) offering 0.35 % X<sub>0</sub> (X-section)
- Translation 0.35  $\mu m 
  ightarrow$  0.18  $\mu m$  CMOS under way for  $\sqrt{s}\gtrsim$  1 TeV :
  - $\circ$  benefits: read-out < 2/10 $\mu s$  (inner/outer layers), > 20% less power, sensor throughput, pixelated SIT, ...
  - exploratory chip (MIMOSA-32) under test
  - mid-scale prototypes validating architecture planned for submission in Q3/ & Q4/2012
  - $\circ$  Full Scale Basic Block (FSBB 1cm<sup>2</sup> active area) expected to be fabricated in 2013
    - $\Rightarrow$  Final (full scale) prototype in 2014/15
  - synergy with AIDA-SALAT, ALICE-ITS & -MFT, CMB-MVD, ...