300Hz Conventional Linac/RF-gun scheme and cost

Junji Urakawa , KEK

300Hz Linac design is a tentative one for heavy beam loading. After some discussion on the scheme for the heavy beam loading, we almost found to reduce the cost by \sim 30%. We still need a time to make a optimum design for the heavy beam loading compensation.

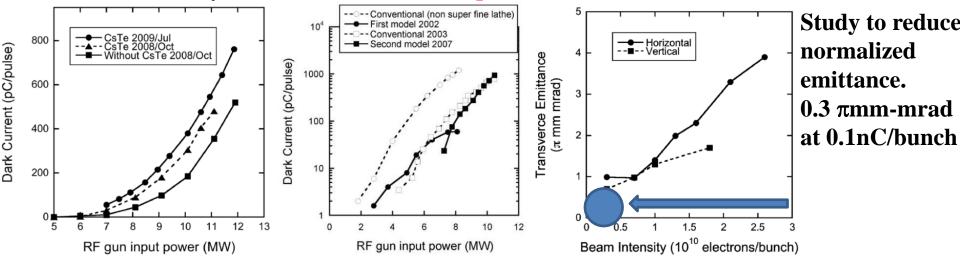
Contents :

- **1. Electron Beam Generation by Photo-cathode RF Gun**
- 2. 300Hz Linac
- 3. Cost

<image>

1.3GeV ATF Linac, results by 80MeV beam.

Photo-cathode RF Gun



10MeV 3.6 cell gun

6MeV 1.6 cell gun

From 2002 onward, successive improvements have been incorporated into newer models of the RF gun. In 2008, a new gun incorporating all of the earlier modifications was produced for the ATF. A typical transverse emittance of $1.3 \pi \text{ mm} \cdot \text{mrad}$ has been obtained under solenoid field of 0.18 T, beam intensity of **1.6nC/bunch**, and **RF power of 9 MW**.

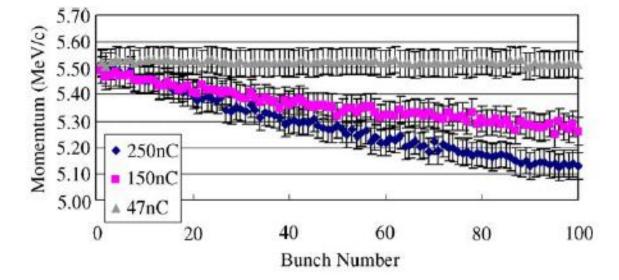


Fig. 11. Momentum of a multi-bunch beam at a laser injection timing of 1.703 µs.

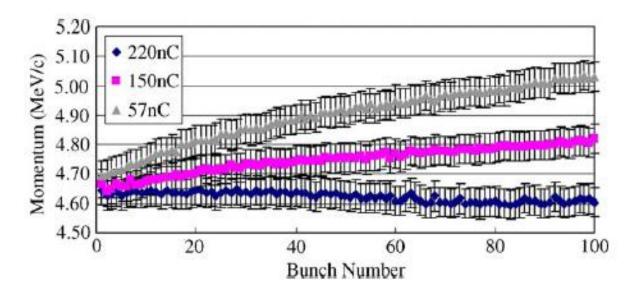
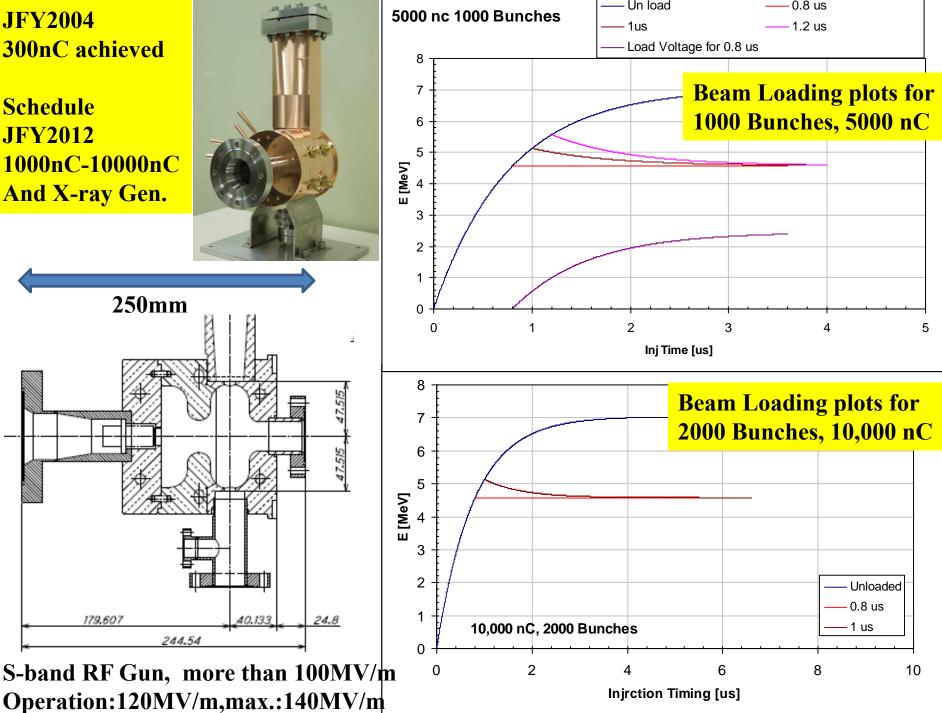
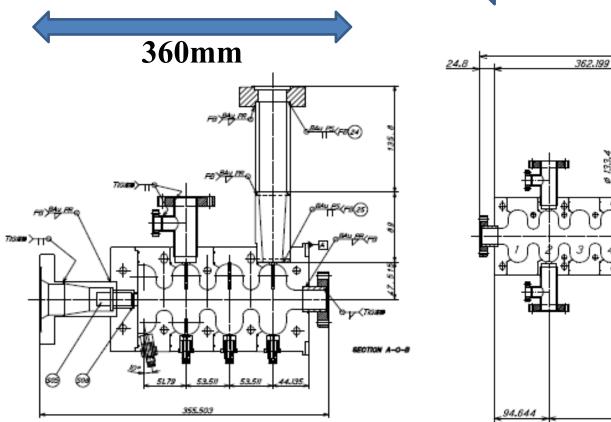
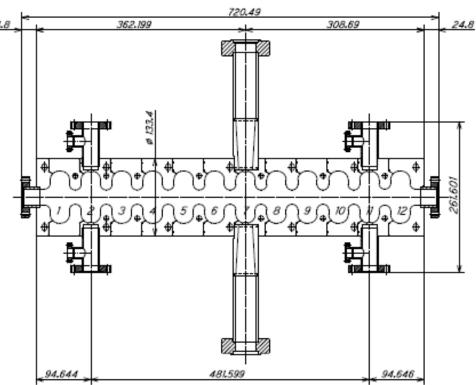





Fig. 12. Momentum of a multi-bunch beam at a laser injection timing of 0.906 µs.

Advanced Photo-cathode RF Gun and accelerator R&D

720mm

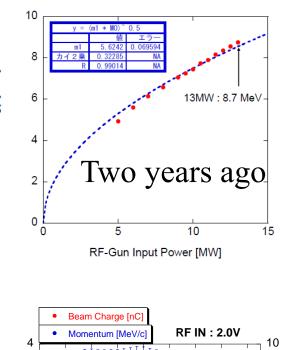
S-band 3.6 cell RF Gun ~12MeV

S-band 12 cell booster linac to get 50MeV.

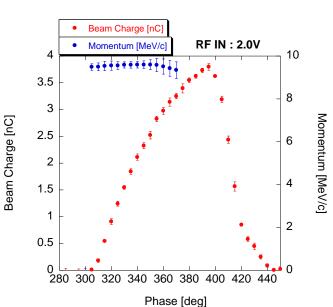
Comparison of various parameters of 1.6 cell RF Gun

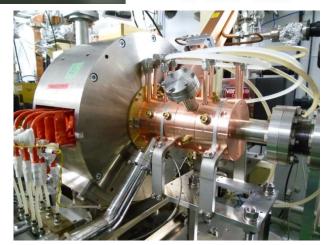

	Simulated	Measured		RF Gun	Q
	New Gun	New Gun	Old Gun	BNL (original)	7900
Frequency MHz	2855.64	2855.61	2855.74	LUCX (original)	7900
Mode Separation MHz	8.67	8.63	3.52	ATF (modified)	12600
Field Balance	1.0	0.98	1.3	BNL (modified)	12780
Quality Factor Q	18000	14,700	7900	LUCX New	14,700
				(Curved Profile)	
Coupling β	1.0	1.0	0.6	LCLS (modified)	13,900

3.6 cell RF Gun perfect machining and tuning

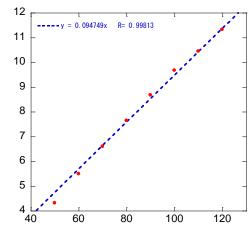

Resonance mode	3pi/3	2pi/3	1pi/3	0pi/3
Measurement [MHz]	2855.63	2852.82	2846.59	2841.55
Target [MHz]	2855.65	2852.82	2846.57	2841.65
Cell	Half cell	Full cell-1	Full cell-2	Full cell-3
Cell Measurement [MHz]	Half cell 2848.97	Full cell-1 2848.06	Full cell-2 2847.64	Full cell-3 2851.82

Machining on 12 cell booster structure is on going. We will replace 3m TW structure to this booster soon.





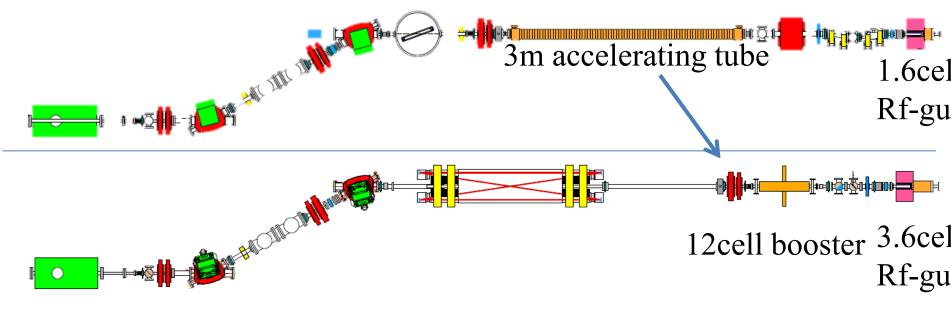
3.6 cell RF Gun Installation

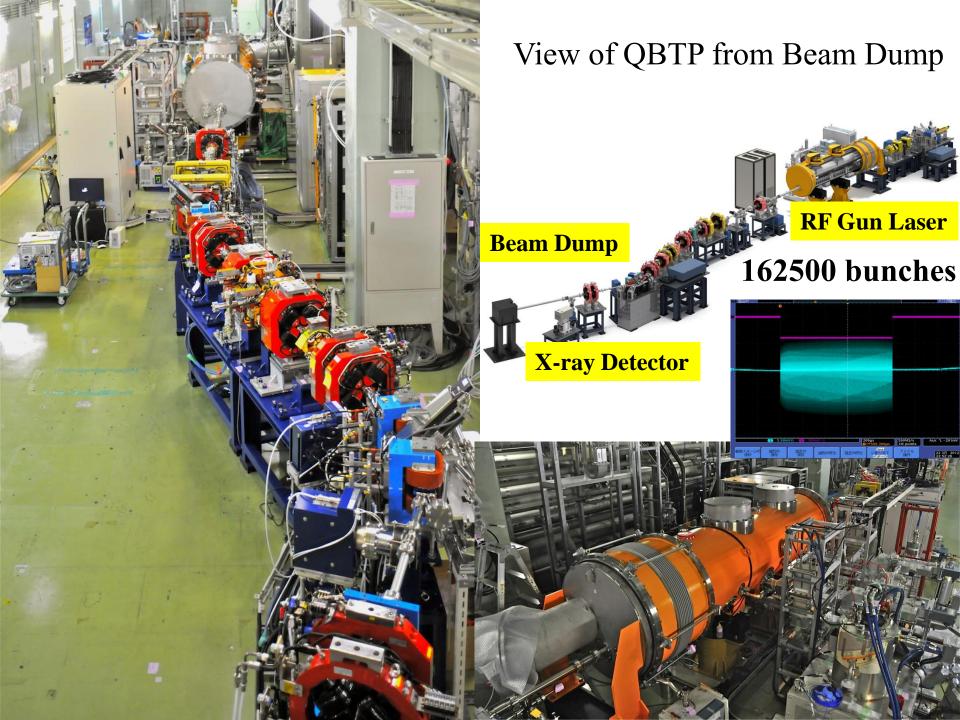

3.6 cell RF-Gun Start of beam acceleration test from 1/11,2012.

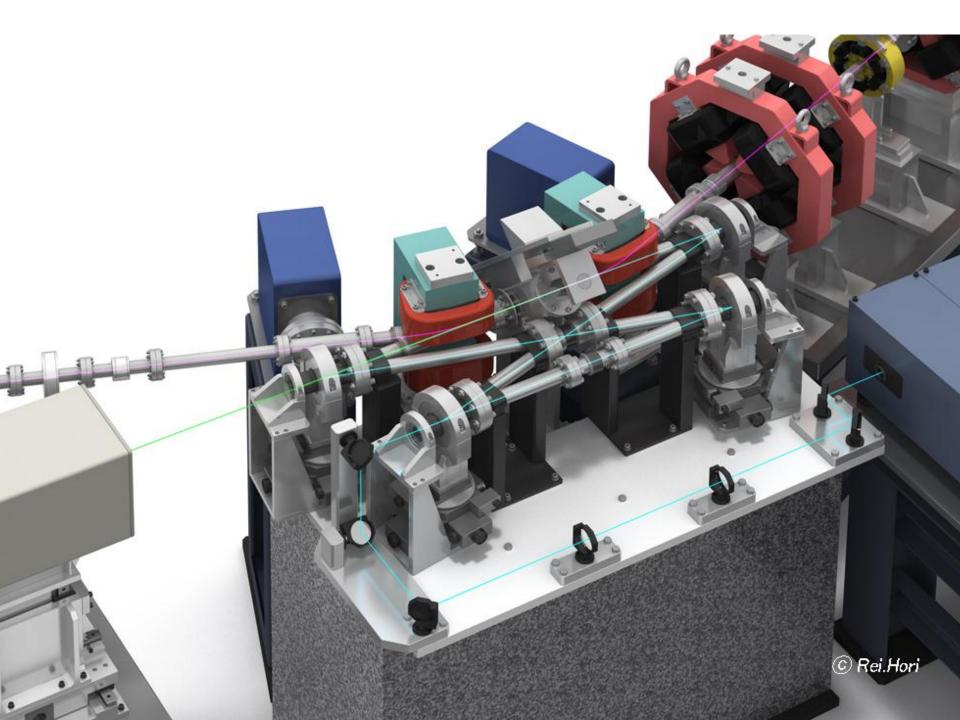
11MeV beam at 120MV/m, from 100bunches/pulse to 1000bunches/pulse beam generation

9.6MeV beam in a week RF aging with ~20.3MW RF input power

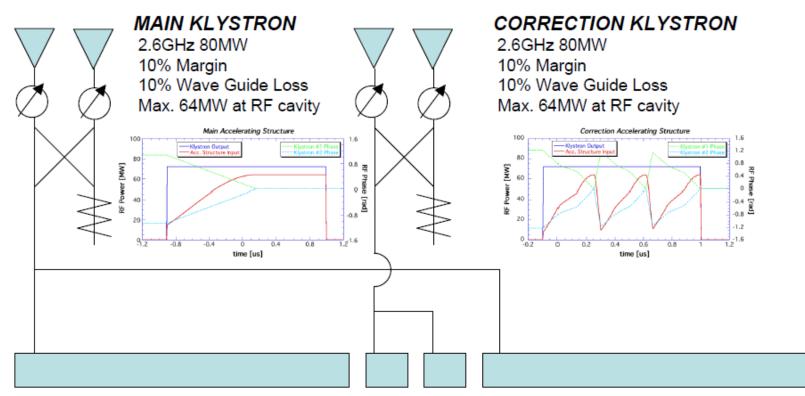
PARMELA SIMULATION

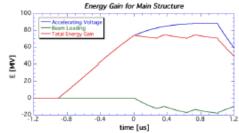



3eam Energy [MeV]

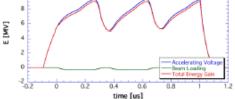

Electric Field Intensity at Cathode [MV/m]

Future plan for LUCX accelerator

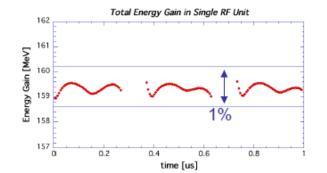

- To downsize the accelerator, we have planed to install a 3.6cell rf-gun and a 12cell booster.
 - 3.6cell rf-gun
 - Beam test has been started from Jan 2012.
 - 12cell booster
 - This booster is making now.

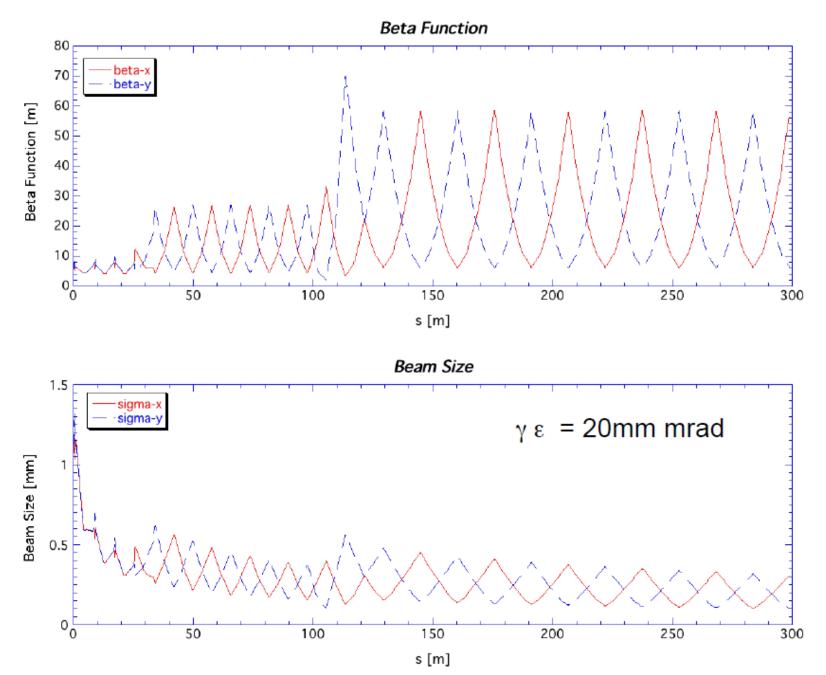


Concept Design of Single RF Unit (Nb=2e10)



Main RF Cavity


L=3.00m (2.6GHz) tf=906ns Q0=13000 r0=60MOhm

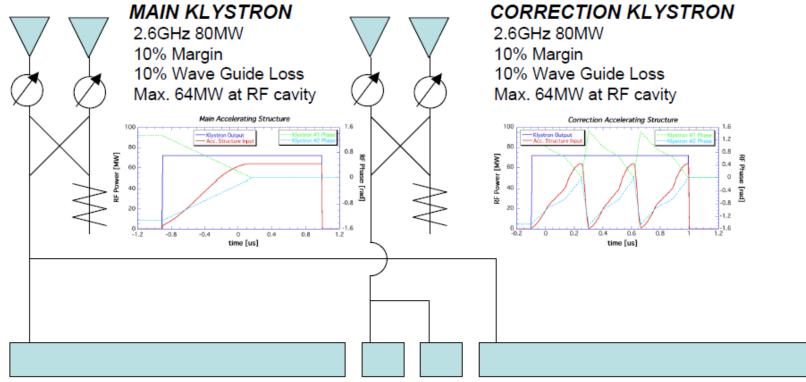

Correction RF Cavity L=0.33m (2.6GHz) tf=96ns Q0=850 r0=5.3MOhm Energy Gain for Correction Structure

Total Energy Gain in 1 Unit 159.3MeV

Beam Optics Design for 6GeV Linac (Nb=2e10)

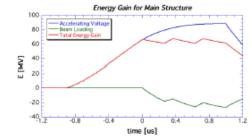
Device List for 6 GeV Linac (Nb=2e10)

Magnet List


35 quads 27 horizontal steerings 27 vertical steerings

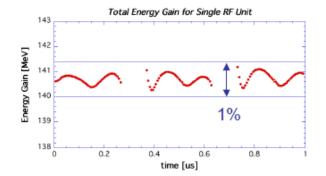
Magnet Name	Effective Length [m]	dB/dx [T/m]
Q01.1	0.1	1.3332
Q02	0.1	-2.6201
Q01.2	0.1	1.3332
Q03.1	0.1	6.0686
Q04	0.1	-11.9069
Q03.2	0.1	6.0686
Q05.1	0.1	11.1410
Q06	0.1	-21.8199
Q05.2	0.1	11.1410
Q07	0.1	-13.9861
Q08	0.1	14.5026
Q09	0.1	11.9981
Q10	0.1	-14.1085
Q11.1	0.1	5.0587
Q12.1	0.1	-6.0110
Q11.2	0.1	6.9631
Q12.2	0.1	-7.9155
Q11.3	0.1	8.8675
Q12.3	0.1	-9.8199
Q11.4	0.1	10.7720
Q13	0.1	-14.7304
Q14	0.1	13.3063
Q15	0.1	-12.6623
Q16	0.1	14.5968
Q17.1	0.1	-9.1552
Q18.1	0.1	10.2777
Q17.2	0.1	-11.4002
Q18.2	0.1	12.5226
Q17.3	0.1	-13.6451
Q18.3	0.1	14.7676
Q17.4	0.1	-15.8901
Q18.4	0.1	17.0125
Q17.5	0.1	-18.1350
Q18.5	0.1	19.2575
Q17.6	0.1	-20.3800

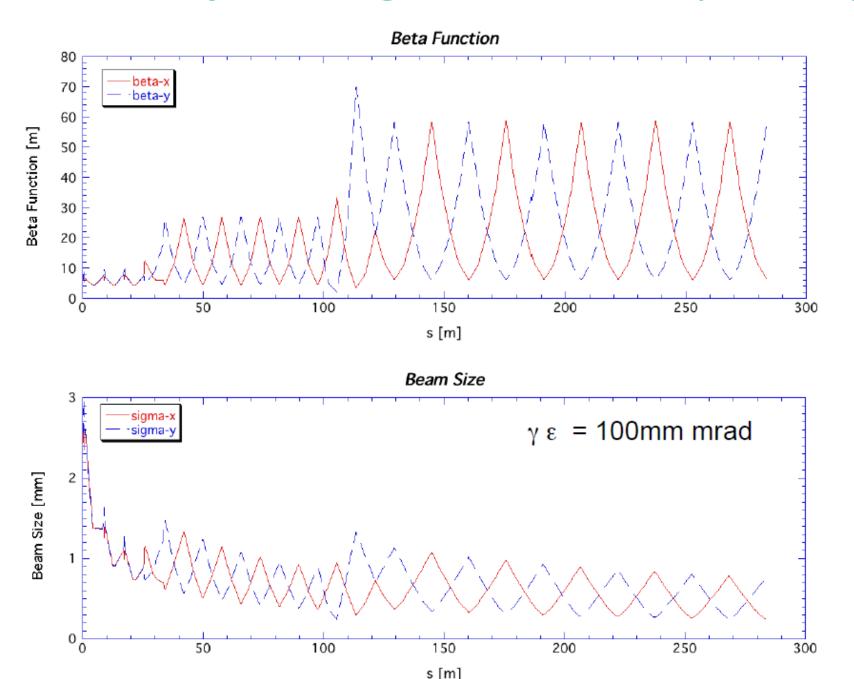
RF section


RF Unit Maximum Accelerating Volatage (80MW Klystron Output) Nominal Accelerating Voltage	170MV	
(72MW Klystron Output)	159.3MV	
Number of Unit	38	
Nominal Accelerating Voltage	6.05GeV	

Concept Design of Single RF Unit (Nb=3e10)

Main RF Cavity


L=3.00m (2.6GHz) tf=906ns Q0=13000 r0=60MOhm


Correction RF Cavity L=0.33m (2.6GHz) tf=96ns Q0=850 r0=5.3MOhm Energy Gain for Correction Structure

time [us]

Total Energy Gain in 1 Unit 140.6MeV

Beam Optics Design for 5GeV Linac (Nb=3e10)

Device List for 5 GeV Linac (Nb=3e10)

Magnet List

34 quads 26 horizontal steerings 26 vertical steerings

Magnet Name	Effective Length [m]	dB/dx [T/m]
Q01.1	0.1	1.3391
Q02	0.1	-2.6322
Q01.2	0.1	1.3391
Q03.1	0.1	5.5491
Q04	0.1	-10.8851
Q03.2	0.1	5.5491
Q05.1	0.1	10.0016
Q06	0.1	-19.5879
Q05.2	0.1	10.0016
Q07	0.1	-12.4680
Q08	0.1	12.9311
Q09	0.1	10.6418
Q10	0.1	-12.5256
Q11.1	0.1	4.4933
Q12.1	0.1	-5.3325
Q11.2	0.1	6.1716
Q12.2	0.1	-7.0108
Q11.3	0.1	7.8498
Q12.3	0.1	-8.6892
Q11.4	0.1	9.5281
Q13	0.1	-13.0255
Q14	0.1	11.7631
Q15	0.1	-11.1916
Q16	0.1	12.8989
Q17.1	0.1	-8.0889
Q18.1	0.1	9.0780
Q17.2	0.1	-10.0672
Q18.2	0.1	11.0564
Q17.3	0.1	-12.0456
Q18.3	0.1	13.0348
Q17.4	0.1	-14.0239
Q18.4	0.1	15.0131
Q17.5	0.1	-16.0023
Q18.5	0.1	16.9915

RF section

RF Unit Maximum Accelerating Volatage (80MW Klystron Output) Nominal Accelerating Voltage (72MW Klystron Output)	148MV 140.6MV
Number of Unit	36
Nominal Accelerating Voltage	5.06GeV

6GeV Drive Linac with 2x10E10 e/bunch	unit :Myen
38 RF units	
2 main klystrons x 38 with 10% margin and 10% loss	0
2.6GHz 64MW at RF cavity, total 76 Klystrons	1748
number of 3m long cavities, total 76 structures	1157
2 phase shifters x 38, total 76 phase shifters	38
HP combinor x 38	130
3dB divider x 38	70
waveguide x 38	20
2 modulators x 38, total 76 modulators	3952
Computor Control Unit x 38	30
2 correction klystrons x 38 with 10% margin and 10% loss	0
2.6GHz 64MW at RF cavity, total 76 Klystrons	1748
number of 0.33m long cavities, total 76 structures	468
2 phase shifters x 38, total 76 phase shifters	38
HP combinor x 38	130
3dB divider x 38	70
waveguide x 38	20
2 modulators x 38, total 76 modulators	3952
Computor Control Unit x 38	30
35 quads	35
27 horizontal steerings	10
27 vertical steerings	10
power supplies for magnets	50
beam monitor devices	50
	13756

~170M\$ For 6GeV

	5GeV Positron Linac with 3x10E10 e/bunch	unit :Myen	Electron Source
	36 RF units		
	2 main klystrons x 36 with 10% margin and 10% loss	(less than 200MYen
	2.6GHz 64MW at RF cavity, total 72 Klystrons	1656	5
~160M\$	number of 3m long cavities, total 72 structures	1096	5
For 5GeV	2 phase shifters x 36, total 72 phase shifters	36	5
	HP combinor x 36	120)
	3dB divider x 36	66	5
	waveguide x 36	20)
	2 modulators x 36, total 72 modulators	3744	Ļ
	Computor Control Unit x 36	30)
	2 correction klystrons x 36 with 10% margin and 10% loss	()
	2.6GHz 64MW at RF cavity, total 72 Klystrons	1656	5
Total	number of 0.33m long cavities, total 72 structures	443	3
~330M\$	2 phase shifters x 36, total 72 phase shifters	36	5
	HP combinor x 36	120)
	3dB divider x 36	66	5
	waveguide x 36	20)
	2 modulators x 36, total 72 modulators	3744	ļ.
by ~30%	Computor Control Unit x 36	30)
Optimization	34 quads	34	ļ
-	26 horizontal steerings	10)
Effort	26 vertical steerings	10)
~230M\$	power supplies for magnets	50)
	beam monitor devices	50)
		13037	7
	Total 26793MYen for 6GeV and 5GeV S-band 300Hz Linac		

Electron source system, Total 26993 Myen

Summary

300Hz Linac Technologies are no problem for conventional positron source. Rough Total Cost ~230M\$ with cost-down of ~30%

300Hz Linac design is a tentative one for heavy beam loading.

After some discussion on the scheme for the heavy beam loading, we almost found to reduce the 300Hz Linac cost by ~30%.

We still need a time to make a optimum design for the heavy beam loading compensation.