### Cavity Beam Position Monitor Systems for the Interaction Point at Accelerator Test Facility 2

Y. I. Kim, H. Park (*KNU*) S. T. Boogert, A. Lyapin (*RHUL*) J. Frisch, D. McCormick, J. Nelson, T. Smith, G. R. White (*SLAC*) M. Ross (*FNAL*)

H. Hayano, Y. Honda, T. Naito, R. Sugahara, N. Terunuma, T. Tauchi, J. Urakawa (KEK)

### Contents

- Motivation
- Cavity BPM for the Interaction Point (IPBPM)
  - Hardware (beam line installation, electronics)
- Data taking
  - Three 8 hour ATF2 shift per week over three weeks
  - with and without attenuator for calibration and resolution
- Digital signal processing
- Results
- Summary

### Motivation



- Two goals at ATF2
  - Goal 1 : To achieve 37 nm beam size vertical plane
  - Goal 2 : Stabilize the beam focal point at a few nanometer level
- Previous result : 8.9 nm
  - Expected resolution was 2.6 nm at the nominal beam charge ( $1 \times 10^{10}$  electrons/ pulse)
- Need to understand unknown noise for achieving few nanometer position resolution

### Accelerator Test Facility 2



## **IPBPM** test system location



# Interaction point BPM (IPBPM)



- Rectangular cavity shape
  - To measure beam position in X direction and Y direction, independently with single cavity
- Short cavity length in the z direction
  - Low angle sensitivity
  - Since large angle jitter due to the strong focus at IP
- Ultra high position sensitivity
  - In order to measure nanometer beam offset

### Electronics



### Hardware installation

First stage of down mixer (C-band - > 714 MHz) @ in the tunnel



Second stage of down mixer (714 MHz -> I, Q) @ the outside of the tunnel



## Data taking

Three, 8 hour ATF2 shift per week over three weeks (2011. Nov. ~ Dec.)

| Label         |            |                     |
|---------------|------------|---------------------|
| W1-HO-CA-RA   | Homodyne   |                     |
| W1-HO-CA-RA-C | Homodyne   | Varied bunch charge |
| W1-HO-CA-RA-B | Homodyne   | Varied bunch length |
| W2-HO-CA-RA   | Homodyne   |                     |
| W3-HE-CA-RA   | Heterodyne |                     |
| W3-HE-CA-RA-C | Heterodyne | Varied bunch charge |

WN : N is Week numberHO/HE : Homodyne/HeterodyneCA : Calibration attenuation value in dBRA : Resolution attenuation value in dB

C/B : Charge scan, Bunch length scan

40, 30, 20 dB attenuator for calibration 40, 30, 20, 0 dB attenuator for resolution

## Heterodyne/Homodyne

Heterodyne processing digitized Signal (Non-zero IF signal) Homodyne processing digitized Signal (Zero IF signal)



# Digital signal processing



## Calibration system

#### Previous measurement system

- No mover system to avoid loss of mechanical stability
- Steering magnets used to control beam position
- Precise stripline BPMs, wire scanners were used to determine an absolute position reference
- Possible to do exactly same way as Honda-san



- Impossible to do exactly same way as previously
- Used mover (+- 60~ +- 200 um)
  - Developed and used for the FFTB
  - Horizontal/vertical : 2 um precision with 0.04 um resolution
  - Roll: 3 5 urad
- Mechanical vibration
  - Relative motion between two BPM blocks ~ 1.4 nm at acceleration frequency (1.56 Hz)



Y. Inoue *et al.*, PhysRevSTAB.11.062801



April 24, 2012

### Calibration



Homodyne With 30 dB attenuator Each digital signal processing techniques show similar performance Heterodyne shows similar performance

### Parameter optimization



### **IPBPM** triplet resolution control plot



### Results



### Geometrical resolution factor

Can be determined using error propagation from relative position between three cavities

$$\sigma_{y,\text{pred}}^2 = \left(\frac{s_2 - s_1}{s_3 - s_1}\right)^2 \left(\frac{\partial y_{2,\text{pred}}}{\partial y_3}\right)^2 \sigma_{y_3}^2 + \left(\frac{s_3 - s_2}{s_3 - s_1}\right)^2 \left(\frac{\partial y_{2,\text{pred}}}{\partial y_1}^2\right)^2 \sigma_{y_1}^2$$

Assuming,  $\sigma_{y1} \approx \sigma_{y_2} \approx \sigma_{y3}$ 

$$\sigma_{y,\text{pred}}^2 = \left(\frac{s_2 - s_1}{s_3 - s_1}\right)^2 + \left(\frac{s_3 - s_2}{s_3 - s_1}\right)^2$$
$$S_2 - S_1 = 164, S_3 - S_2 = 76, S_3 - S_1 = 240$$

Geometrical factor: 0.753

### Charge effect



### Bunch length effect



#### Measured using streak camera

Tried to keep same charge Checked the beam charge using ICT

### Results



N dB ext : N dB attenuator for calibration and resolution N dB : N dB attenuator for calibration and 0 dB for resolution

Charge >  $0.70 \ 10^{10}$  electron/pulse

(Multiplied by geometrical factor)

| Technique    | 40 dB ext | 30 dB ext | 20 dB ext | 40 dB  | 30 dB  | 20 dB  |
|--------------|-----------|-----------|-----------|--------|--------|--------|
| Single point | 11.747    | 15.311    | 17.695    | 7.004  | 30.440 | 4.128  |
| Filter       | 4.202     | 5.843     | 7.803     | 2.905  | 31.086 | 2.715  |
| Integration  | 5.591     | 7.096     | 9.864     | 3.983  | 26.373 | 2.795  |
| DDC          | -         | 19.384    | 14.955    | 27.758 | 13.699 | 20.571 |

Larger jitter : < 3 um (30 times larger than April 1<sup>st</sup>, week) vertical direction

Charge ~ 0.42 10<sup>10</sup> electron/pulse

# Summary

- High position sensitivity cavity BPMs system tested for interaction region at ATF2
- Homodyne/Heterodyne signal processing methods used
- Different digital signal processing techniques applied
  Single point sampling, filtering, integration, DDC
- Resolution in region 4 to 20 nm with attenuators
- Less than 10 nm without attenuators and extrapolated scale factor
- Hard to compare homodyne/heterodyne directly due to the beam condition week by week
- The position resolution was consistently smaller for homodyne system measurement (1<sup>st</sup> week)