TDR lattice of Main Linac: 9+4Q4+9 configuration

V.Kapin, N.Solyak

Fermilab

KILC12, 23-27 April 2012, Daegu, Korea
Session "GDE Main Linac", 24/04/2012, Contribution ID: 81

Outline

- Few layouts were considered; a "compromised" layout suggested by Chris Nantista (March-2012) was accepted
- Treaty points:
"T(P/E)RTML2ML \& TPML2BDS/TEML2PS
- ML lattice re-designed with MAD8 (a special version 51.15.s by M.Woodley) following to the approach [*].
- Details of modified matching procedures including optical functions, dispersion minimization and the linac reference orbit following the Earth's curvature.
- Summary \& the present lattice status
* A.Valishev, N.Solyak, M.Woodley, "Status of the ILC Main Linac Lattice Design", PAC'07, pp.2966-2968, 2007.

ML "Compromise" version (C.Nantista)
It allows to use most of existing RDR solutions and requires small number of re-matchings
\# -- 4-rf unit CSTR
\# -- 3-rf unit CSTR
e- beam

\qquad

Cunit \#1 Cunit \#2 Cunit \#3 Cunit \#4 Cunit \#5 Cunit \#6

Basic lattice segmentations

Name in Lattice	modules	Length (m)					
		without quad	with quad	without quad		warm section (m)	7.652
RFU\#	RF unit (lengths in meters)	12.652	12.652	12.652			
		3 modules					37.956
CSTR\#	"4" Long Cryo-String	RF unit RF unit		RF unit	RF unit end-box		
		37.956	37.956	37.956	37.956	2.50	
	4-rf unit CSTR 3-rf unit CSTR	12 CM 's	plus strin	g end box			154.324
CSTR\#	"3" Short Cryo-String	RF unit	RF unit	RF unit	end-box		
		37.956	37.956	37.956	2.50		
		9 CM's plus string end box					116.368
Service end-box							
CUNIT \#	Cryo-Unit 2.500	CSTR	CSTR	CSTR	CSTR	CSTR	CSTR

Layout of Cryo-Units

Positron Main Linac: $\quad(72$ CSTR $=282$ RFunits $=846$ CM's)

	TR	CSTR "3"	RF unit	Length(m)
CUNIT1 =	5	2	26	1006.856
CUNIT2 =	13		52	2008.712
CUNIT3 =	13		52	2008.712
CUNIT4 =	13		52	2008.712
CUNIT5 =	11	2	50	1932.8
CUNIT6 =	11	2	50	1932.8
Total:	66	6	282	10936.852

Sbox	01	02	03	04	05	06	07						
Sbox	08	09	10	11	12	13	14	15	16	17	18	19	20
Sbox	21	22	23	24	25	26	27	28	29	30	31	32	33
Sbox	34	35	36	37	38	39	40	41	42	43	44	45	46
Sbox	47	48	49	50	51	52	53	54	55	56	57	58	59
Sbox	60	61	62	63	64	65	66	67	68	69	70	71	72

Legend: $\quad 7.65$ Warm section 7.652 m

Sbox

Service box \#\# Long (4-RFU) CSTR

Electron Main Linac: $\quad(72$ CSTR $=285$ RFunits $=855$ CM's)

CSTR "4"			CSTR "3"			RF units Length (m)		
CUNIT1 $=$	5		2		26	1006.856		
CUNIT2 $=$	13				52	2008.712		
CUNIT3 $=$	13				52	2008.712		
CUNIT4 $=$	13				52	2008.712		
CUNIT5 $=$	13				52	2008.712		
CUNIT6 $=$	12		1		51	1970.756		
Total:	69	3	$\mathbf{2 8 5}$	$\mathbf{1 1 0 5 0 . 7 2}$				

Sbox	01	02	03	04	05	06	07						
Sbox	08	09	10	11	12	13	14	15	16	17	18	19	20
Sbox	21	22	23	24	25	26	27	28	29	30	31	32	33
Sbox	34	35	36	37	38	39	40	41	42	43	44	45	46
Sbox	47	48	49	50	51	52	53	54	55	56	57	58	59
Sbox	60	61	62	63	64	65	66	67	68	69	70	71	72

ilr

Optical Functions at ML boundaries

Actually ML ends at the entry of PMSCOL ($\mathrm{p}+$ machine protection \& collimation)

Quadrupoles in ML cells

Basic configurations of focusing structure

A. Quasi-periodical "long" 4-RFU CSTR inside of regular part of CUNITs : 2 FODO quasi-periodical cells (phase advances ~75/60 degrees) => 4 quads with K1 denoted as K1=KML001, KML002, KML003, KML004
B. Long 4-RFU CSTR between CUNIT ends separated by warm sections: " $5+5$ " quad configuration around warm sections with K1 denoted as KML060-KML064 and KML065-KML069
C. Two short $3-$ RFU CSTR at the beginning of the $5^{\text {th }}$ CUNIT of PLIN: 4 first quads with K1 denoted as K1=KML011, KML012, KML013, KML014
D. 6 quads at the ML beginning and 6 quads at the ML end are used for matching to the Twiss parameters β and α at ML boundaries.

itL Matched β - functions in ELIN

Curvature implementation

- ML follows curvature of the Earth 's surface
- Each CM is aligned along the Earth horizon and the beam-line is kinked at the ends of CMs
- Beam-line kinks (MAD8) are implemented as a thin KML-lines consisting of a dipole (MULT, KOL=p) \& a vert. corrector (VKICK): The former changes both ref. frame and beam trajectory, the latter cancel the trajectory change
- In MAD8 KMLs are switched on by "SET, CURVE, 1"
- KML-lines are set at both ends of every CM. Several types:
> KML1 - between CMs inside of RFUs
$>$ KMLQ - at the ends of CM with quads
> KML2 - between CMs at CSTRs ends
> KML4 - between CMs at CUNITs ends
$>$ KML5 - at the end of the last CM (at ML exit)
> KML8 - at the beginning of the first CM (ML entrance)

in IIL Steering to the Earth's curvature

- The beam trajectory is steered through the centers of quads, i.e. only at every third CM.
- Switch on by "SET, STEER,1"

Match corrector strengths AML\# along ML

MATCH, BETA0=TWSSO
VARY, AMLY10 (11,13,15,22,23,25)

```
    CONSTR, PATTERN="YML...", Y=0
    LMDIF, TOL=1.E-20,...
    MIGRAD, TOL=1.E-20, ..
ENDMATCH
```

Notice. Another possible constraint with $\mathrm{Y}>0$ (instead of $\mathrm{Y}=0$) minimizing wake-field effects (Kubo's proposal) is not realized yet in the present ML lattice.

Match AML26, AML27 at exit:
MATCH, BETA0=TWSSO
VARY, AMLY26, STEP=1.E-9
VARY, AMLY27, STEP=1.E-9 CONSTR, \#E, $\mathrm{Y}=0, \mathrm{PY}=0$ LMDIF, TOL=1.E-20, CALLS=5000
MIGRAD, TOL=1.E-20, CALLS=5000
ENDMATCH

$\square \square \square$
 IIL
 Beam orbit after steering

Dispersion minimization

- The beam injected into ML must be macthed to the periodic dispersion in curved lattice
- The optimal dispersion at injection (TDY \& TDPY) is found by minimizing DY at every defocusing quads

! Find TDY \& TPDY
SET, CURVE, 1; SET, STEER, 1 ;
SET, BUMPS, 0; USE, PLIN1

MATCH, BETA0=TWSSO
VARY, TDY; VARY, TDPY
WEIGHT, WX=1.E-9
CONSTR, PATTERN="MQD.*", DY=0
LMDIF, TOL=1.E-20;
ENDMATCH
! Save solution at the $6^{\text {th }}$ RFU
SET, MDY, TWSS_QML006[DY]
SET, MDPY, TWSS_QML006[DPY]

il IIL
 Matching DY \& ref. orbit at ML entrance

- RTML end with $D Y=0$ \& w/o curvature is matched into ML beginning with DY $\neq 0$ \& CURVE=>1;
- 5 additional vertical kicks (AMLYi+AMLDY\#\#i) for 5 first correctors at ML beginning are switched on by "SET, BUMPS,1"

SET, CURVE, $1 ;$ SET, STEER, 1
SET, BUMPS, 1; USE, PLIN1
SAVEBETA, TWSS1, YML003
SAVEBETA, TWSS2, YM L005
TWISS, BETA0=TWSSO

MATCH, BETAO=TWSSO
VARY, AMLDY11i(12i, 13i, 14i, 15i);
CONSTR, YML003, Y=TWSS1[Y]
CONSTR, YML005, Y=TWSS2[Y], PY=TWSS2[PT阿]
CONSTR, QMLO06[1], DY=MDY, DPY=MDPY
LMDIF (MIGRAD), TOL=1.E-20;
ENDMATCH

iln IIL

Matching DY \& ref. orbit at the ML end

- ML end with DY $\neq 0$ \& CURVE=>1; is matched PMSCOL end with $D Y=0$ \& w/o curvature
- 5 additional vertical kicks (AMLYi+ AMLDY\#\#o) for the last correctors at ML end are switched on by "SET, BUMPS,1"

!PLIN example:

SET, CURVE, 1; SET, STEER, 1
SET, BUMPS, 1; USE, PLIN1
SAVEBETA, TWSS1_YML281, YML281 !next-to-last
TWISS, BETA0=TWSSO

MATCH, BETA0=TWSSO
VARY, AMLDY21o (22o, 230, 240, 250);
CONSTR, YML281, Y=TWSS1_YML281[Y]
CONSTR, YPLIN2o, $\mathrm{Y}=0, \mathrm{PY}=0, \mathrm{DY}=0, \mathrm{DPY}=0$
LMDIF (MIGRAD), TOL=1.E-20;
ENDMATCH

itc Matched DY \& Y throughout PLIN

KILC12, Korea, Apr.23-27
V.Kapin \& N.Solyak, ML lattice

Summary \& the present lattice status

- Main Linac lattices (9+4Q4+9 configuration) for TDR version have been re-designed, tuned and matched
- Tuning and matching subroutines previously created for RDR in 2007 are checked and adaptively modified for TDR-2012 version
- Presented outlook of lattice tuning is a helpful reference in a future, since the CM length can be slightly changed in the final designs
- ML lattices are ready for a further non-optical "textinformation" polishing (like MAD8 "TYPE" statements)
- ML lattices are documented and will be posted at ILC EDMS.

