

# TDR lattice of Main Linac: 9+4Q4+9 configuration

V.Kapin, N.Solyak Fermilab

KILC12, 23-27 April 2012, Daegu, Korea Session "GDE Main Linac", 24/04/2012, Contribution ID: 81



### **Outline**

- Few layouts were considered; a "compromised" layout suggested by Chris Nantista (March-2012) was accepted
- Treaty points:
  - "T(P/E)RTML2ML & TPML2BDS/TEML2PS
- ML lattice re-designed with MAD8 (a special version 51.15.s by M.Woodley) following to the approach [\*].
- Details of modified matching procedures including optical functions, dispersion minimization and the linac reference orbit following the Earth's curvature.
- Summary & the present lattice status
- \* A.Valishev, N.Solyak, M.Woodley, "Status of the ILC Main Linac Lattice Design", PAC'07, pp.2966-2968, **2007**.



### ML "Compromise" version (C.Nantista)

It allows to use most of existing RDR solutions and requires small number of re-matchings







### Basic lattice segmentations

|                    |                       |                 |              |                 |          |            |        | Length (m) |
|--------------------|-----------------------|-----------------|--------------|-----------------|----------|------------|--------|------------|
| Name in<br>Lattice | modules               | without<br>quad | with<br>quad | without<br>quad |          | warm secti | on (m) | 7.652      |
| RFU#               | RF unit               | 12.652          | 12.652       | 12.652          |          |            |        |            |
|                    | (lengths in meters)   | 3 modu          | les          |                 | l        |            |        | 37.956     |
|                    |                       |                 |              |                 |          |            |        |            |
|                    |                       | <b>5</b>        | DE :         | DE ::           | DE ''    |            |        |            |
|                    |                       | RF unit         | RF unit      | RF unit         | RF unit  | end-box    | 1      |            |
| CSTR#              | "4" Long Cryo-String  | 37.956          | 37.956       | 37.956          | 37.956   | 2.50       |        |            |
|                    | 4-rf unit CSTR        | 12 CM's         | plus strin   | g end box       | <b>(</b> |            | •      | 154.324    |
|                    | 3-rf unit CSTR        |                 | •            |                 |          |            |        |            |
| CSTR#              | "3" Short Cryo-String | RF unit         | RF unit      | RF unit         | end-box  |            |        |            |
|                    |                       | 37.956          | 37.956       | 37.956          | 2.50     |            |        |            |
|                    |                       | 9 CM's p        | lus string   | end box         |          | •          |        | 116.368    |
|                    | Service<br>end-box    |                 |              |                 |          |            |        |            |
| CUNIT #            | Cryo-Unit 2.500       | CSTR            | CSTR         | CSTR            | CSTR     |            | CST    | R CSTR     |
|                    | -                     |                 |              |                 |          | • '        |        |            |



### Layout of Cryo-Units

**Positron Main Linac:** (72 CSTR = 282 RFunits = 846 CM's)

| <b>CUNIT1</b> 7.65 ( | <b>CUNIT2</b> 7.65 | CUNIT3 | 7.65 | <b>CUNIT4</b> | 7.65 | CUNIT5 | 7.65 | <b>CUNIT6</b> |
|----------------------|--------------------|--------|------|---------------|------|--------|------|---------------|
|----------------------|--------------------|--------|------|---------------|------|--------|------|---------------|

|          | CSTR "4" | CSTR "3" | RF unit | Length(m) |
|----------|----------|----------|---------|-----------|
| CUNIT1 = | 5        | 2        | 26      | 1006.856  |
| CUNIT2 = | 13       |          | 52      | 2008.712  |
| CUNIT3 = | 13       |          | 52      | 2008.712  |
| CUNIT4 = | 13       |          | 52      | 2008.712  |
| CUNIT5 = | 11       | 2        | 50      | 1932.8    |
| CUNIT6 = | 11       | 2        | 50      | 1932.8    |
| Total:   | 66       | 6        | 282     | 10036 852 |

| Sbox | 01 | 02 | 03 | 04 | 05 | 06 | 07 |    |    |    |    |    |    |
|------|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Sbox | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| Sbox | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 |
| Sbox | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 |
| Sbox | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 |
| Sbox | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 |

Legend:

7.65 Warm section 7.652m

Service box ## Long (4-RFU) CSTR ## Short (3-RFU) CSTR

**Electron Main Linac:** (72 CSTR = 285 RFunits = 855 CM's)

#### CUNIT1 7.65 CUNIT2 7.65 CUNIT3 7.65 CUNIT4 7.65 CUNIT5 7.65 CUNIT6

|          | CSTR "4" | CSTR "3" | RF units | Length (m) |
|----------|----------|----------|----------|------------|
| CUNIT1 = | 5        | 2        | 26       | 1006.856   |
| CUNIT2 = | 13       |          | 52       | 2008.712   |
| CUNIT3 = | 13       |          | 52       | 2008.712   |
| CUNIT4 = | 13       |          | 52       | 2008.712   |
| CUNIT5 = | 13       |          | 52       | 2008.712   |
| CUNIT6 = | 12       | 1        | 51       | 1970.756   |
| Total    | 60       | 2        | 205      | 11050 72   |

| Sbox | 01 | 02 | 03 | 04 | 05 | 06 | 07 |    |    |    |    |    |    |
|------|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Sbox | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| Sbox | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 |
| Sbox | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 |
| Sbox | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 |
| Sbox | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 |

## ilc

### Optical Functions at ML boundaries



Actually ML ends at the entry of PMSCOL (p+ machine protection & collimation )



### Quadrupoles in ML cells

### Basic configurations of focusing structure

- A. Quasi-periodical "long" 4-RFU CSTR inside of regular part of CUNITs: 2 FODO quasi-periodical cells (phase advances ~75/60 degrees) => 4 quads with K1 denoted as K1=KML001, KML002, KML003, KML004
- B. Long 4-RFU CSTR between CUNIT ends separated by warm sections: "5+5" quad configuration around warm sections with K1 denoted as KML060-KML064 and KML065-KML069
- C. Two short 3-RFU CSTR at the beginning of the 5<sup>th</sup> CUNIT of PLIN: 4 first quads with K1 denoted as K1=KML011, KML012, KML013, KML014
- D. 6 quads at the ML beginning and 6 quads at the ML end are used for matching to the Twiss parameters  $\beta$  and  $\alpha$  at ML boundaries.



### Matched $\beta$ -functions in PLIN





### Matched $\beta$ – functions in ELIN





### Curvature implementation

- ML follows curvature of the Earth 's surface
- Each CM is aligned along the Earth horizon and the beam-line is kinked at the ends of CMs
- Beam-line kinks (MAD8) are implemented as a thin KML-lines consisting of a dipole (MULT, K0L=p) & a vert. corrector (VKICK): The former changes both ref. frame and beam trajectory, the latter cancel the trajectory change
- In MAD8 KMLs are switched on by "SET, CURVE, 1"
- KML-lines are set at both ends of every CM. Several types:
  - KML1 between CMs inside of RFUs
  - > KMLQ at the ends of CM with quads
  - > KML2 between CMs at CSTRs ends
  - KML4 between CMs at CUNITs ends
  - > KML5 at the end of the last CM (at ML exit)
  - > KML8 at the beginning of the first CM (ML entrance)

## Steering to the Earth's curvature

- The beam trajectory is steered through the centers of quads, i.e. only at every third CM.
- Switch on by "SET, STEER,1"

## Match corrector strengths AML# along ML

MATCH, BETA0=TWSS0 **VARY, AMLY10 (11,13,15,22,23,25)** 

CONSTR, PATTERN="YML...", Y=0 LMDIF, TOL=1.E-20,... MIGRAD, TOL=1.E-20, ... ENDMATCH

Notice. Another possible constraint with Y>0 (instead of Y=0) minimizing wake-field effects (Kubo's proposal) is not realized yet in the present ML lattice.



#### Match AML26, AML27 at exit:

WARY, AMLY26, STEP=1.E-9
VARY, AMLY27, STEP=1.E-9
CONSTR, #E, Y=0, PY=0
LMDIF, TOL=1.E-20, CALLS=5000
MIGRAD, TOL=1.E-20, CALLS=5000
ENDMATCH



### Beam orbit after steering





### Dispersion minimization

- The beam injected into ML must be macthed to the periodic dispersion in curved lattice
- The optimal dispersion at injection (TDY & TDPY) is found by minimizing DY at every defocusing quads



#### ! Find TDY & TPDY

SET, CURVE, 1; SET, STEER, 1; SET, BUMPS, 0; USE, PLIN1

WARY, TDY; VARY, TDPY

WEIGHT, WX=1.E-9

CONSTR, PATTERN="MQD.\*", DY=0

LMDIF, TOL=1.E-20;

ENDMATCH

! Save solution at the 6<sup>th</sup> RFU SET, MDY, TWSS\_QML006[DY] SET, MDPY, TWSS\_QML006[DPY]



### Matching DY & ref. orbit at ML entrance

- RTML end with DY=0 & w/o curvature is matched into ML beginning with DY *≠*0 & CURVE=>1;
- 5 additional vertical kicks (AMLYi+AMLDY##i) for 5 first correctors at ML beginning are switched on by "SET, BUMPS,1"

SET, CURVE, 1; SET, STEER, 1 SET, BUMPS, 1; USE, PLIN1 SAVEBETA, TWSS1, YML003 SAVEBETA, TWSS2, YML005 TWISS, BETA0=TWSS0

MATCH, BETA0=TWSS0

VARY, AMLDY11i (12i, 13i, 14i, 15i);

CONSTR, YML003, Y=TWSS1[Y]

CONSTR, YML005, Y=TWSS2[Y], PY=TWSS2[P<sup>2</sup>/2<sup>5</sup>]

CONSTR, QML006[1], DY=MDY, DPY=MDPY

LMDIF (MIGRAD), TOL=1.E-20;

**ENDMATCH** 



s (m)



### Matching DY & ref. orbit at the ML end

- ML end with DY ≠0 & CURVE=>1; is matched PMSCOL end with DY=0
   & w/o curvature
- 5 additional vertical kicks (AMLYi+ AMLDY##o) for the last correctors at ML end are switched on by "SET, BUMPS,1"

#### **!PLIN** example:

SET, CURVE, 1; SET, STEER, 1

SET, BUMPS, 1; USE, PLIN1

SAVEBETA, TWSS1\_YML281, YML281 !next-to-last

TWISS, BETA0=TWSS0

MATCH, BETA0=TWSS0

VARY, AMLDY210 (220, 230, 240, 250);

CONSTR, YML281, Y=TWSS1\_YML281[Y]

CONSTR, YPLIN2o, Y=0, PY=0, DY=0, DPY=0

LMDIF (MIGRAD), TOL=1.E-20;

**ENDMATCH** 



## ilc

## Matched DY & Y throughout PLIN





### Summary & the present lattice status

- Main Linac lattices (9+4Q4+9 configuration) for TDR version have been re-designed, tuned and matched
- Tuning and matching subroutines previously created for RDR in 2007 are checked and adaptively modified for TDR-2012 version
- Presented outlook of lattice tuning is a helpful reference in a future, since the CM length can be slightly changed in the final designs
- ML lattices are ready for a further non-optical "textinformation" polishing (like MAD8 "TYPE" statements)
- ML lattices are documented and will be posted at ILC EDMS.