
## Homework of Cavity-Integration

H. Hayano, 04242012

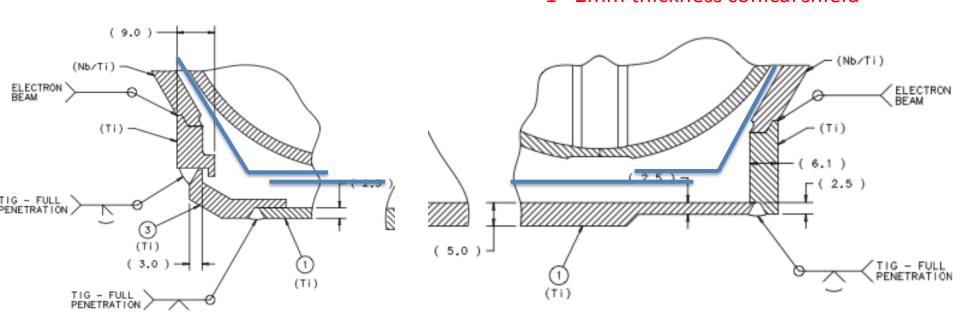
# Homework by KILC

| ML                 | - Provide a complete ML lattice with 9+4Q4+9 cryomodule unit,                                                                                                                                       |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Integration        | - Confirm requirement of energy overhead (1.4%) w/ additional ML length for operational availability (provide rationale)                                                                            |  |
|                    | - Fix total numbers of CM including ML, RTML, e-source (# add. CMs to be fixed)                                                                                                                     |  |
|                    | - Q + corrector +BPM package design (w/ energy dependent design?)                                                                                                                                   |  |
|                    | - Plan for full power upgrade at 500 GeV, and scenario up to 1 TeV                                                                                                                                  |  |
|                    | (→ such as quad. configuration, FDFD up to 500 GeV, and FFDD at 1 TeV?                                                                                                                              |  |
| HLRF               | - Required RF power overhead, more detail (in KCS and RDR)                                                                                                                                          |  |
|                    | - Cost saving of PDS, Klystron, Marx Generator etc                                                                                                                                                  |  |
|                    | - Catalogue local power distribution variants and conceptual designs                                                                                                                                |  |
|                    | - Estimate waveguide losses and heat loads                                                                                                                                                          |  |
| CM and Cryogenics  | - Confirm CM slot length to be fixed: 12,652 mm in RDR, and it need to be                                                                                                                           |  |
|                    | reflected to the current ILC-CM drawing which has currently 12,644 mm                                                                                                                               |  |
|                    | (11794+850) in FNAL-CM4.                                                                                                                                                                            |  |
|                    | - Asses the need for accessibility and maintenance of active components (tuner                                                                                                                      |  |
|                    | motors)                                                                                                                                                                                             |  |
|                    | <ul> <li>Cryo-string length, additional length of Cold-box for phase-separation, to adapt<br/>new RDR-like RF unit and/or tilting tunnel and effect on add. Total main linac<br/>length.</li> </ul> |  |
| Cavity Integration | - Cavity-slot length to be well established (to be 1326.7 mm)                                                                                                                                       |  |
|                    | - Feasibility of magnetic shield inside LHe tank at central region and outside                                                                                                                      |  |
|                    | at inter-connect.                                                                                                                                                                                   |  |
| Cavity Gradient    | <ul> <li>Update fabrication process and recipe; re-definition of production yield</li> </ul>                                                                                                        |  |
|                    | (documentation)                                                                                                                                                                                     |  |
| Coupler processing | - Determine specifications for peak power processing                                                                                                                                                |  |
|                    | <ul> <li>Evaluate solution for tunnel in-situ processing</li> </ul>                                                                                                                                 |  |

### Cavity Slot length: RDR review



# Magnetic Shield Inside at LHe tank outside in interconnect: feasibility check


Proposal: KEK type inside shield + cylindrical end shield outside

cylindrical shield inside jacket LVHO1 **Conical shield inside endplate** 

Pill-box end-cell shield, outside jacket

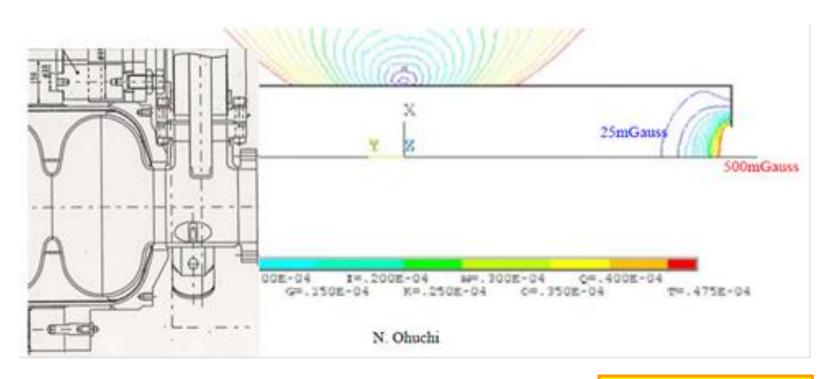
## Details of Conical shield at endplate

#### 1 - 2mm thickness conical shield



Conical shield can be formed by press and put into endplate during end-group welding

or

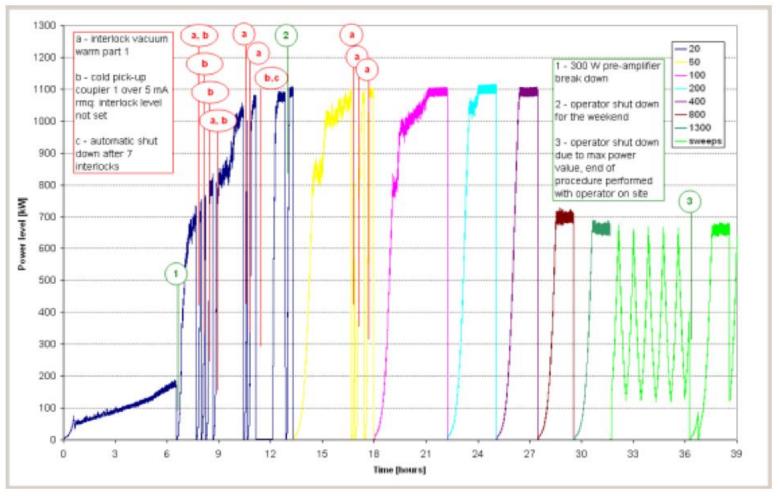

Conical shield can be formed from fan-cutout and put into endplate, by lapped around and bolted,

Connected with short-cylindrical overlap by bolt.

## **Magnetic Shields of KEK Cavities**



## Calculation of Magnetic Fields in KEK Cavity

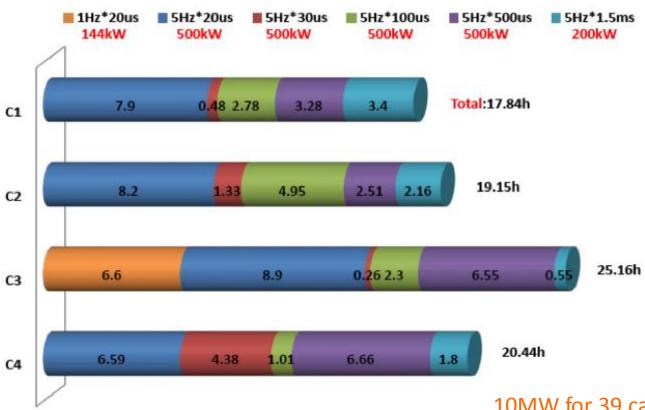



by N. Ohuchi (KEK)

Opening aperture and distance from aperture are important

**Coupler processing: procedure** 

#### XFEL coupler (used in S1-G) process




Paired coupler process:

20μs 1100kW50μs 1100kW100μs 1100kW200μs 1100kW

400μs 1100kW 800μs 700kW 1300μs 700kW 1300μs power sweep

#### XFEL coupler S1-G in-situ process (reflected from cavity at room temp)



10MW for 39 cavities with WG loss

ILC tunnel in-situ: determined by available power ~250kW

| 20µs        | 500kW  |                                       |       |
|-------------|--------|---------------------------------------|-------|
| 30us        | 500kW  | 20μs                                  | 250kW |
| •           |        | <b>50</b> μs                          | 250kW |
| •           | 500kW  | 100us                                 | 250kW |
| 500µs       | 500kW  | · · · · · · · · · · · · · · · · · · · |       |
| 1500us      | 200kW  | •                                     | 250kW |
| <b>1000</b> | 200111 | 1500µs                                | 200kW |