Measurement of Beam halo and Compton recoil electron spectrum after the IP of ATF2 using Diamond detector

April 24, 2012

Hwanbae Park for HyoJung Hyun (KNU, LAL)

Contents

- Introduction of ATF2 and Shintake beam size monitor
- Measurement of beam halo and Compton recoil electron spectrum
- Introduction of diamond sensor
- Prototype design of diamond detector
- IV measurement of diamond sensor
- Summary and Plan

ATF2 operation & instrumentation R&D

2nd order telescope fine tuning of local errors

Match optics into FF buffer section for input errors

DR extraction setup, stability

Shintake beam size monitor at IP

Shintake beam size monitor at IP

What is beam halo?

- major issue for IR backgrounds at many colliders, e.g. future linear colliders, B factories, and also ATF2
- halo population poorly known, involves various mechanisms: dark current, wake-fields, non-linearity, multiple intra-beam Coulomb scattering, scattering off residual beam gas and thermal photons, very low Pt t-channel physics processes, ...
- optics configurations for luminosity performance

Motivation for measurements at ATF2

- previous measurements in 2007 in old EXT line
- halo transport in ATF2 and direct probe of tails in IP angular spread
- investigation of halo modeling / comparing with measurements
- check possibility to probe Compton electron recoil distribution during IP-BSM operation

- What is Compton recoil electron spectrum?
 - When the beam size is measured at IP with Shintake monitor, electron beam is scattered by photon and a little part of their energy is transported to the photon

^{*} The plot is one of MAD simulation results

Illustrative layout

Expected radiation dose near beam dump preliminary

- > 500 μm thick Si sensor 2 m from dump
- For 10¹⁰ beam electrons incident on dump
 - deposition from neutron backscattering
 → 0.25×10⁻⁴ Gy/pulse or 300 Gy/year
 - deposition from 107 halo electrons
 → 0.3×10⁻² Gy/pulse or 25 kGy/year
 - Tolerance for CVD diamond > 1 MGy

Characteristics of Diamond

Property	Silicon	Diamond	Advantage	Disadvantage
Atomic number	14	6	 close to the soft human tissue → radiation dosimetry minimize particle scattering and absorption → tracking detector 	small cross section for high energy X-rays or γ-rays → poor detection efficiency
Density (gm ⁻³)	2.32	3.5		
Band gap (eV)	1.1	5.5	windowless operationlow noise at high temperature	
Resistivity (Ωcm)	105	>1012	no needed reverse bias	
Electron mobility (cm ³ V ⁻¹ s ⁻¹)	1500	1800	fast signal collection	
Hole mobility (cm ³ V ⁻¹ s ⁻¹)	500	1200		
Saturation velocity (µm ns ⁻¹)	100	220	high speed and high count rate operation → can be a application on high event rate environment → low pile-up	
Dielectric constant	11.7	5.6	small capacitance	
Neutron transmutation cross- section (mb)	80	3.2	radiation hardness	
Energy per e-h pair (eV)	3.6	13		
Average minimum ionizing signal per 100 µm (e)	8000	3600		small signal

Operational principle of Diamond

Prototype design of Diamond detector

- Diamond sensor consists only a few channel
- The post-IP region is scanned by the diamond sensor module
- The readout electronics is placed at control area (The distance between diamond sensor and electronics is about 50 m)
- PARISROC2 and DSO6104L are considered as front-end and back-end electronics, respectively

Prototype design of Diamond detector

Prototype design of Diamond detector

Prototype design of Diamond detector: Mechanics

Prototype design of Diamond detector: Dynamic range

- The size of charge signal is calculated with number of events multiplied by charge of 1 MIP
 - 9 1 MIP corresponds for 2.74 fC (500 μm thick and CCE ≥ 95% diamond assumed).
- Very huge signal and too wide dynamic range
- But, repetition rate is a few Hz (1.5 Hz ~ 6 Hz)

	Size of Diamond sensor		
	1 × 20 mm ²	2 × 20 mm ²	
intrinsic spatial resolution*	0.29 mm	0.58 mm	
charge signal of halo	3 pC< charge < 365 pC	3 pC < charge < 550 pC	
charge signal of Compton	8 fC< charge < 2 pC	0.01 pC < charge < 5 pC	

^{*} pitch / $\sqrt{12}$, in here pitch is assumed to be a length of one side

Prototype design of Diamond detector: Front-end electronics

- Front-end electronics : PARISROC2
 - Photomultiplier Array Integrated in SiGe Read Out Chip
 - 16 independent channels and each channel has a variable gain
 Cover the large input dynamic range
 - Charge dynamic range: 50 fC to 100 pC
 - Shaper with variable shaping time (from 25 ns to 100 ns)
 - Self triggering and ADC integrated
 - Both charge and time data can be measured

Prototype design of Diamond detector: Front-end electronics

- Front-end electronics : PARISROC2
 - Photomultiplier Array Integrated in SiGe Read Out Chip
 - 16 independent channels and each channel has a variable gain
 - → cover the large input dynamic range
- can be expanded up to 500 pC
- Charge dynamic range: 50 fC to 100 pC
- Shaper with variable shaping time (from 25 ns to 100 ns)
- Self triggering and ADC integrated
- Both charge and time data can be measured

Prototype design of Diamond detector: Front-end electronics

- Front-end electronics : PARISROC2
 - Photomultiplier Array Integrated in SiGe Read Out Chip
 - 16 independent channels and each channel has a variable gain
 - → cover the large input dynamic range
- can be expanded up to 500 pC
- Charge dynamic range: 50 fC to 100 pC
- Shaper with variable shaping time (from 25 ns to 100 ns)
- Self triggering and ADC integrated
- Both charge and time data can be measured

can not be changeable another amplifier needed

Prototype design of Diamond detector: Back-end electronics

- Back-end electronics : DSO6104L
 - 4-channel Agilent 6000L Series Low-Profile Oscilloscopes
 - 1 GHz analog bandwidth and up to 4 GSa/s sample rate
 - 8 bit vertical resolution (extensible to 12 bits)
 - Maximum input: 400 V_{pk}
 - BNC connector used

- The DAQ system for PARISROC2 and DSO6104L are already integrated at LAL and KEK, respectively
- Understanding both systems -> Adapting for our diamond detector

IV measurement of Diamond pad sensor

There are a several aspect to characterize the diamond sensor such as <u>the current voltage</u> <u>characteristic</u>, charge collection, and timing properties

4.6 × 4.6 mm² and 500 μm thick single crystalline diamond pad sensor

Dark current is measured with Keithley 6517B electrometer for difference bias voltage

Dark current level is a few pA at 1 V/μm

Other characteristics will be proceeded

4.6 × 4.6 mm² single crystalline diamond pad

Summary and Plan

- Single crystal CVD diamond sensor is chosen for beam halo and Compton recoil electron measurements
- We have a huge charge signal and wide dynamic range
- The repetition rate is a few Hz (1.5 Hz ~ 6 Hz)
- Mechanics design shows some progress
- Diamond and readout electronics is in designing and studying
- Now we have a single pad diamond sensor from UK company
- Understanding of diamond sensor and PARISROC2 ASIC chip
- Prototype diamond detector: Aim to first do beam tests in ATF diagnostic area: end of 2012