

Software Status simulation and reconstruction for the DBD

Frank Gaede, DESY ILDMeeting @ KILC 2012 Daegu, Korea, Apr 23-27, 2012

Outline

- introduction
- simulation
 - validation of subdetectors
- reconstruction
 - FPCCD
 - new tracking
 - PandoraPFA
 - LCFIVertex
- Grid production
- Summary & Outlook

timeline for iLCSoft development

 timeline for iLCSoft development in last 2-3 years was mainly driven by the requirements for the ILD-DBD

• this talk: main activities:

improved,	/adopted	core	tools
-----------	----------	------	-------

LCIOv2, GEAR, CED,...

improved	t rea	lism o	ft	he s	imul	ati	ion
----------	-------	--------	----	------	------	-----	-----

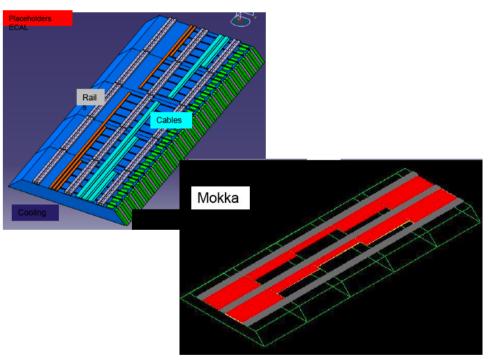
- include gaps, imperfection and services
- complete re-write of tracking code!
 - old code unmaintainable and cannot easily cope with high bg
- adaption of reconstruction algorithms (PFA, Flavor tag) to new technology options (SDHcal, FPCCD,...) [not in this talk]

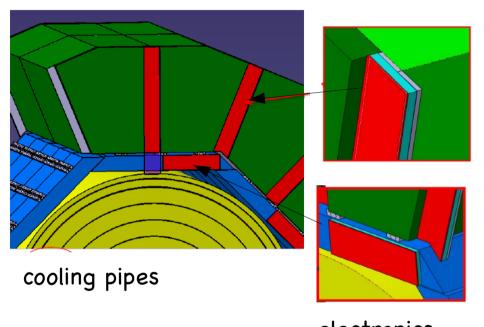
5 month	Analysis and Writing	
t0 - 5m	Monte Carlo production finished	ıţ
5 month	Grid Production	13 month
t0 -10m	start Monte Carlo production	13
3 month	Test, Debug and release ILDsoft	
t0-13m	freeze ILDsoft development	
>1 montl	implement baseline in simulation	
t0-x	ILD baseline defined	
	evaluate technology options develop tracking package develop geometry LCIOv2 improve simulation realism improve reconstruction study machine backgrounds	~20 month

recent developments in Mokka

- major rewrite of some sub detector drivers :
 - SIT, SET, ETD FTD Muon
 - increased level of detail and realism (incl. services)
- made existing drivers more realistic:
 - TPC, AHCal, Ecal, FCal,...
- new drivers (technology options):
 - SDHCal, SciEcal
- added overall services and cables
- new models for DBD:

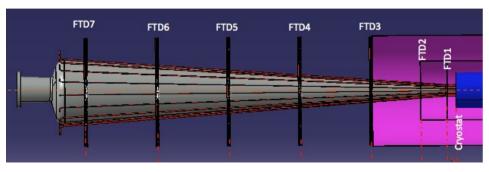
```
ILD_O1_v01 "ILD simulation reference Model for DBD using Analog HCal"
ILD_O2_v01 "ILD simulation reference Model for DBD using SD HCal"
ILD_O3_v01 "ILD simulation reference Model for DBD using SciW Ecal and Analog HCal"
```


- first part ILD_OX read "ILD Option X", refers to the choice of subdetector technology options of the model
- second part _vxx refers to the software release version that describes this option for ILD


2012 23-27, Sep Korea, Daegu, I Frank Gaede, KILC12,

increased realism in ILD_OX models

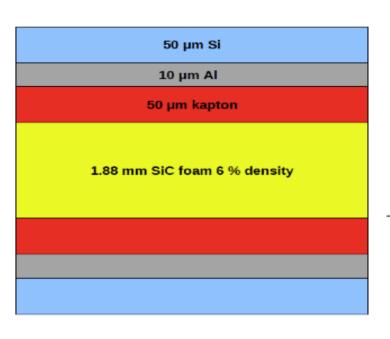
added cabling and services for TPC, ECal & Hcal (C.Clerc, G.Musat)


· including inner detector services as defined by R&D groups

electronics

big step forward in increasing realism of ILD detector simulation!

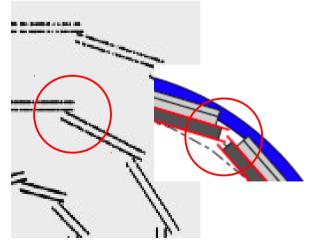
power supply cables


validation of Mokka ILD model(s)

- started validation process with volunteers nominated by the subdetector R&D groups, checking the Mokka drivers for:
 - overlaps, consistency w/ engineering model, hit production,...

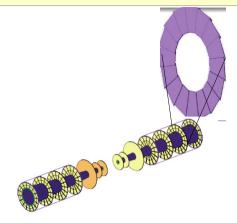
detector	person	status
VXD	G.Voutsinas	ongoing
SIT/SET	K.Androsov	to be done
FTD	J.Duarte	to be done
TPC	S.Aplin	done
ECal	D.Jeans	done
AHCal	Sh.Lu	done
SDHcal	G.Grenier	
FCal	A.Rosca, B.Pawlik	
Muon	A.Saveliev	

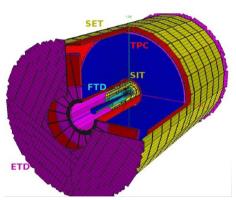
start MC production, once all sub detectors are 'approved'


VXD validation

- 0.053 % x 2 +
- 0.011 % x 2 +
- 0.018 % x 2 +
- 0.130 % =
- 0.294 % X_0 per double layer

simplified in GEAR:


- 0.2% XO support
- + 0.1% XO sensitive
- = 0.3% X0 total

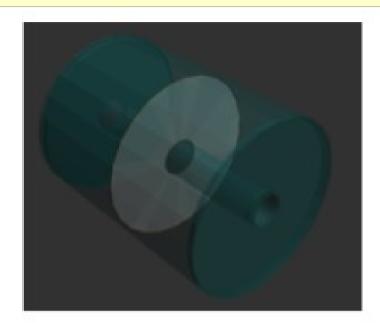


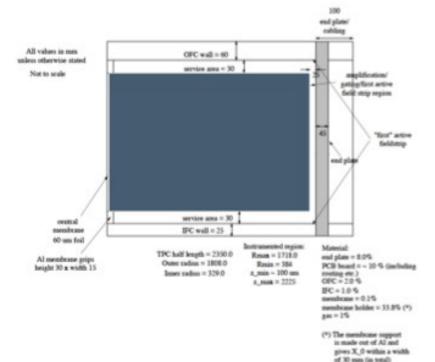
- inconsistency in geometry detected
- potential impact on track finding
- => will be fixed soon by Yorgos
- => VXD is then validated

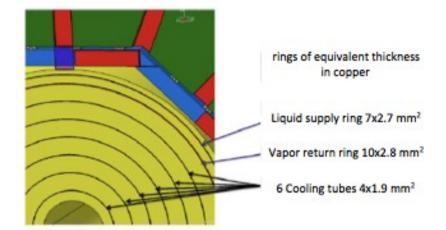
SIT/SET& FTD K. Androsov, J. Duarte

- very detailed new simulation models have been developed for SIT/SET as well as for the FTD (ETD is not in simulation models)
- these models have not quite reached the level of maturity one would need for the DBD mass production
- slightly simplified have been developed in parallel in order to proceed with new C++ tracking code
 - these models have planar wafers, ~realistic support material and work with new tracking

Mokka driver and GEAR


It has been decided to do a simplified version of the current driver (SFtd06) easier to mantain which is going to be the **Baseline for DBD**:


- Keep segmented petals (2 sensor per petal) in a frame-like sopporting structure
- Cabling envelop according to latest description (http://ilcagenda.linearcollider.org/ getFile.py/access?contribId=1&resId=0&materialId=slides&confId=5482)
- Pixels simplified (petal-segmented


=>SIT/SET validation pending
=> FTD validation pending

TPC validation

S.Aplin

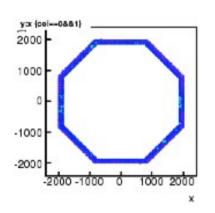
End-Plate modeled as discs of material representing components of the readout: GEM structure, Readout, and Support frame.

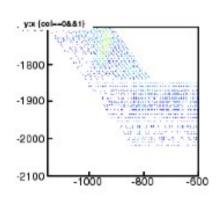
Cathode constructed from two thin discs, insulator and conductor, held by membrane grip.

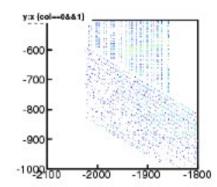
Cooling modeled using rings attached to the outside of the end-plate.

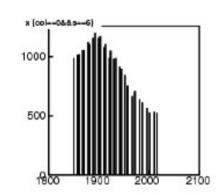
Parameterised digitisation well established in the main reconstruction chain.

=> TPC is validated


2012 23-27, Korea, Sep Frank Gaede, KILC12, Daegu,


SiW Ecal validation


Engineering design dimensions:


Barrel: Rin=1843, Rout=2028, 1/2 length=2350

Endcap: Rin = 400 (square), Rout=2090 (octogon), Zin=2450, Zout=2635

StepLeng NextVolume WorldPhysical BarrelEcalModule 2.45 FirstSlab

0.25 PCBCuShield pcb 1.3 FirstSlab

0.1 WaferSi 0.5 Ground

> BarrelEcalModule 0.15 RadiatorSlab

2.1 BarrelEcalModule

0.15 Ground

0.1 WaferSi

SecondSlab

PCBCuShield

SecondSlab pcb 1.3

0.25 BarrelEcalModule

0.75 RadiatorStruct

BarrelEcalModule

0.75 FirstSlab

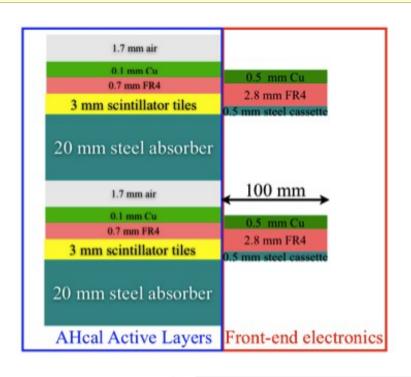
0.25 PCBCuShield

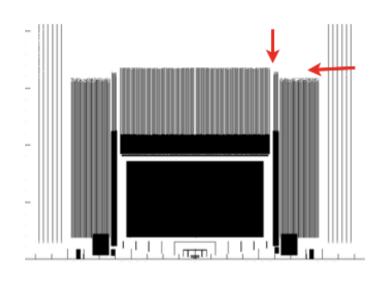
1.3 FirstSlab pcb

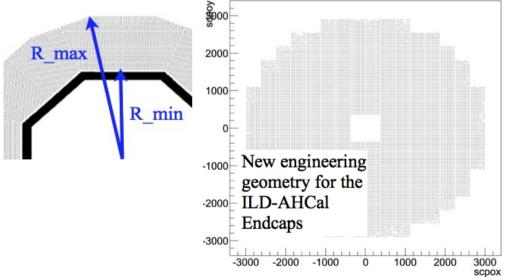
0.1 WaferSi

Conclusions

Hit positions consistent with engineering design

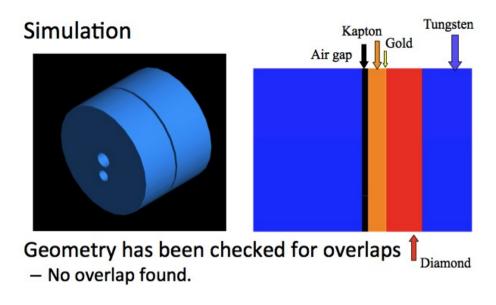

Decoded CellID behave as expected

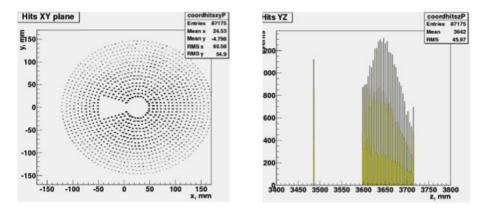

No problems detected in ECAL structure (geantino)


=> Ecal is validated!

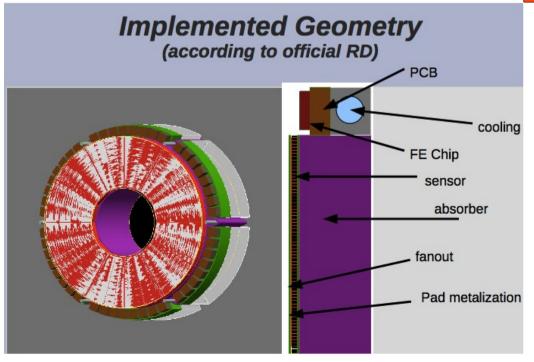
AHcal validation

Sh.Lu

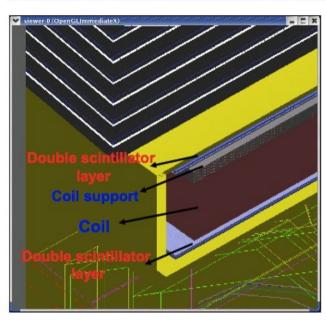

The Mokka drivers for the Barrel and the Endcap have been validated and synchronized with engineering design.


EndcapRing will be checked with engineering design too.

=> AHCal almost validated


Fcal validation

A.Rodca, B.Pawlik


 Z_{in} = 3450 mm in the engineering design and ~3600 mm in the simulation.

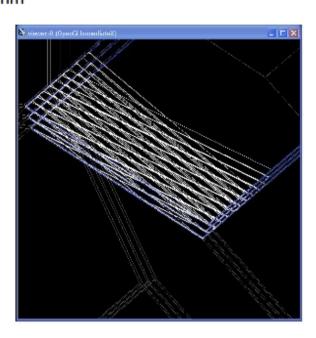
- check impact on physics
- -> probably keep value in simulation - and change eng. model accordingly
- => BCal (almost) validated
- => LCal validated

Muon validation

V. Saveliev

Cryostat: Detailed Geometry

- Instrumentation 2 Double Scintillator Layers baseline?


Coil: Detailed Geometry,Coil Segmentation

Yoke: Detailed Geometry based on Mechanical Design

- Barrel: 10x(100+40) +3x(560 +40) mm - EndCup: 10x(100+40) +2x(560+40) mm

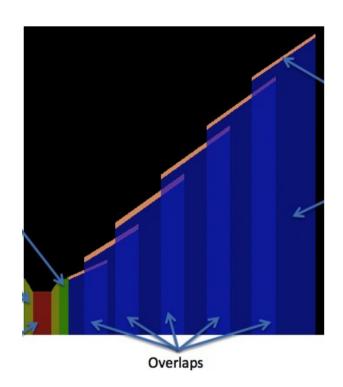
various readout options exist

- 3x3cm scint. tiles <- used in LOI & Pandora
- 3x3cm RPC <- implemented in ILD_O1
- 3xLcm scint. strip stereo <- proposed
- => need decision asap !!

=> muon validation ongoing

Overall Overlap checking Ch. Grefe

/geometry/test/recursive_test


Gives detailed printout with coordinates of

overlaps:

GeomTest Error: The volumes t both daughter appear to over	ube_IPOuterE s of volume W	Bulge[0] orldPhy	and tube_IP ysical[0],				
length (cm)	star	t positio	n (cm)		end p	osition (cm)	
16.45	0	0	37.13	0	0	53.58	
Which in the n	nother coordin	ate sys	tem is:				
length (cm)	star	t positio	n (cm)		end p	osition (cm)	
16.45	0	0	37.13	0	0	53.58	
Which in the c	oordinate sys	tem of t	ube_IPOuter	Bulge[0] is:			
length (cm)	star	t positio	n (cm)		end p	osition (cm)	
16.45	0	0	-1.16	0	0	15.29	
Which in the c	oordinate sys	tem of t	ube_IPOuter	Bulge[0] is:			
length (cm)	star	t positio	n (cm)		end p	osition (cm)	
16.45	0	0	-21.91	0	0	-5.46	

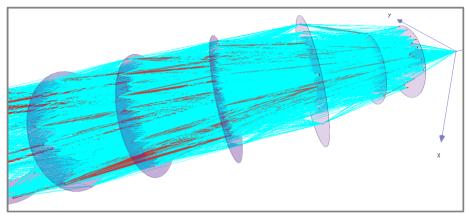
Careful: can be false positives / false negatives Still the best starting point

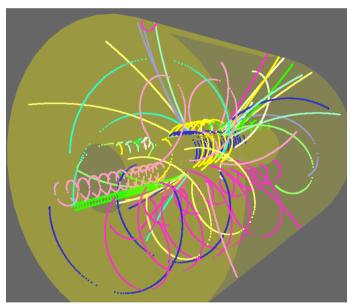
- World volume to small fixed
- SIT overlaps with FTD fixed
- Overlapping sensors in SIT and SET fixed
- Overlaps in FTD fixed
- Insulators overlap in TPCCathode (?)
- Overlaps in tube_IPinnerTube (?)
- Overlaps in tube_IPOuterBulge
- YokeEndcap overlaps YokePlug fixed
- Overlaps in HCalServices fixed
- Chamber1 and Chamber2 overshoot YokeEndcap

=> ILD_O1_v03 should soon be free of overlaps

new C++ tracking: patrec activities

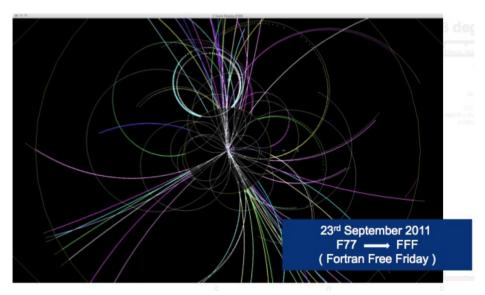
ForwardTracking


 new forward tracking patrecusing cellular automaton
 (R.Glattauer)


Clupatra

- new TPC patrec recently:
 - fixed memory consumption
 - cleaned up code & algorithm
 - use new IMarlinTrk/MarlinKalTest

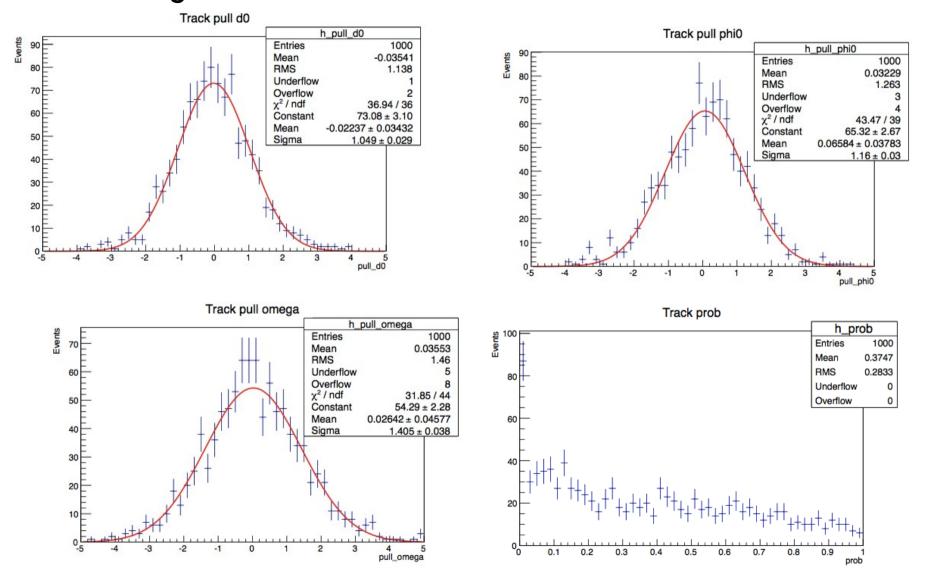
MarlinTrkProcessors


 rewrite of 'old' SiTracking and FullLDCTracking using MarlinTrk/MarlinKalTest

see dedicated talk on Wednesday

new Si-Tracking - full tracking

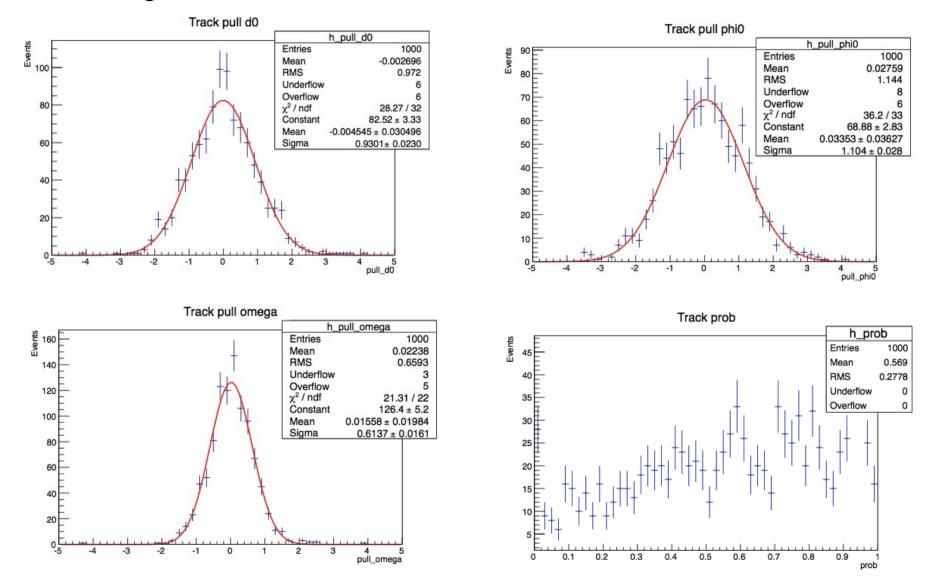
ttbar event @ 500 GeV reconstructed using Clupatra and SiliconTracking_MarlinTrk
then combined into full tracks using FullLDCTracking MarlinTrk


- shown in Granada @ LCWS11:
- re-write of SiliconTracking and FullLDCTracking (from LOI) using the new MarlinTrk track fit
- using 3d space points in SIT/SET and FTD (as was done in LOI) yet with planar wafers

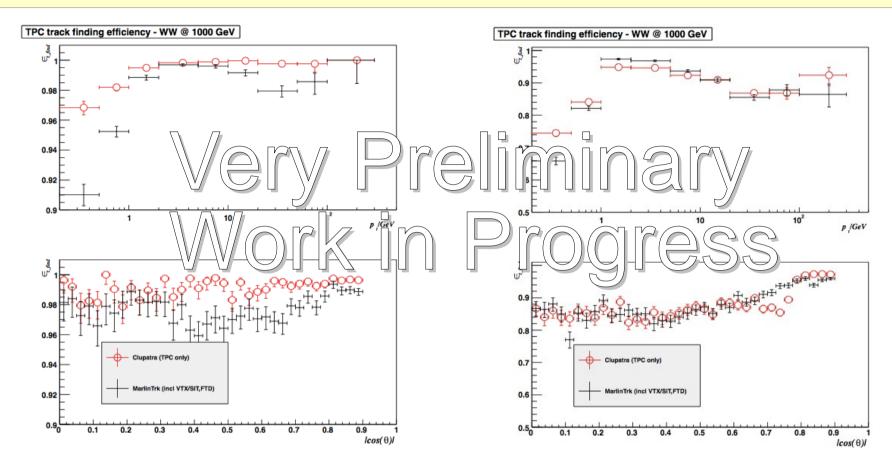
• since then:

- write out proper 1d strip measurements for Si-Trackers
- using the new lcio::TrackerHitPlane [x,y,z, u, v, du, dv]
- implemented 1d fit in MarlinTrkKalTest (KalDet)
- implemented SpacePointBuilder:
 - combine 1d TrackerHits from double stereo layer into
 3d space points -> incl. ghost hits!
 - use 3d point in pat rec but proper 1d strip hit in fit

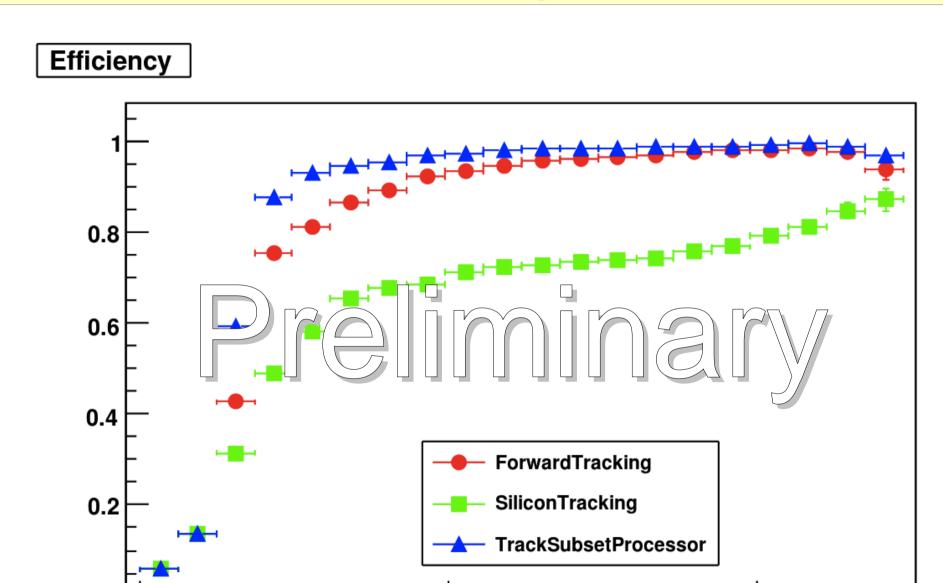
first test of new Si-Track fit


single 3 GeV muons central: VXD/SIT (no TPC)

material underestimated !?


first test of new Si-Track fit

single 3 GeV muons forward: FTD (no TPC)


material overestimated !?

first look at efficiencies in v01-13-05

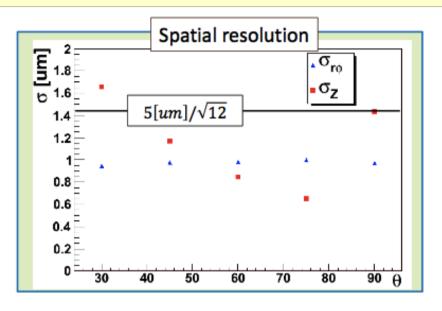
- · first look at clupatra efficiencies:
 - would be acceptable (incl. 75% true hit cut left)
 - but obvious issue w/ split tracks (right)
- first look at MarlinTrk efficiencies (incl. Clupatra):
 - work to be done loss partially understood:
 - probability cut and poor errors...

forward tracking efficiency

 \mathbf{p}_{T}

10

FPCCD - digitzer

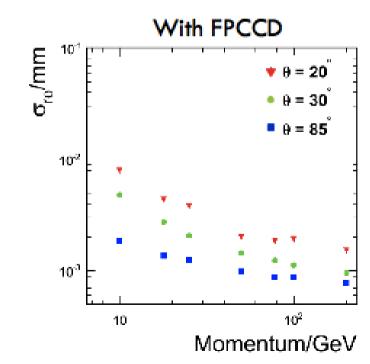

standard

 $\theta = 85$

Momentum/GeV

 10^{11}

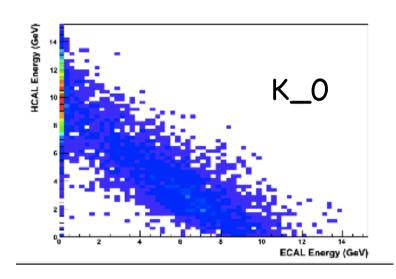
D.Kamai

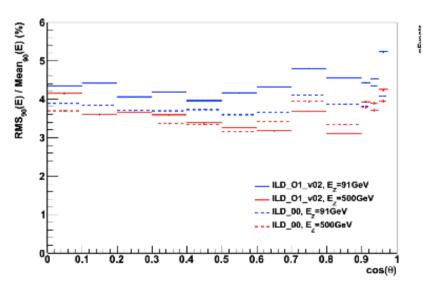

Layer	1 TeV Without cut	1 TeV With Cut	Sb2009wTF-500 w/ cut
1	20.1 %	15.5 %	3.079 %
2	10.1 %	7.79 %	1.74 %
3	0.854 %	0.674 %	0.0919%
4	0.458 %	0.363 %	0.0731 %
5	0.145 %	0.116 %	0.01 <i>7</i> %
6	0.116 %	0.094 %	0.015 %

nice progress in FPCCD digitization and reconstruction

• improved impact para
meter resolution at

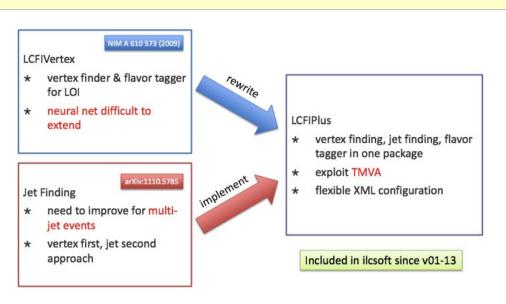
slightly increased occupancies

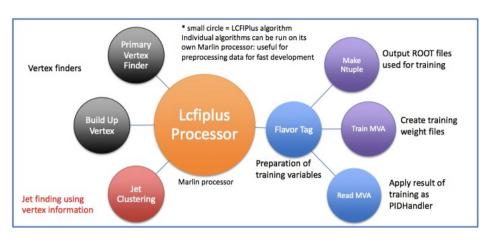

=> could be used in DBD reco!?

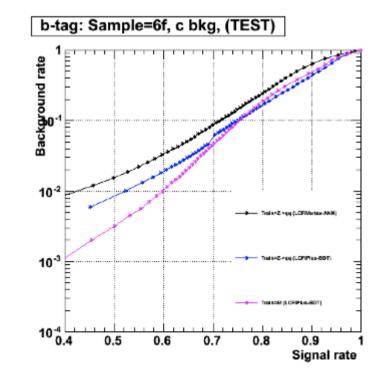


PandoraPFA

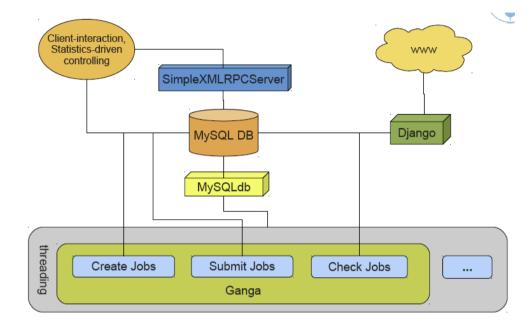
J.Marshall


- started to adopt MarlinPandora to new ILD_O1 model
 - re-calibrated with single particles
 - use new tracking -> track state @ IP
- in v01-13-05 discrepancy seen wrt to LOI more prominent at lower energies
- need to study in detail
- dis-entangle effects from calorimeters and tracking
- e.g. using TruthTracker




$E_z (= 2 * E_j)$	91GeV	500GeV
ILD_00, RMS ₉₀ (E _j)/mean ₉₀ (E _j) [%]	3.69 ± 0.05	3.40 ± 0.05
ILD_O1_v02, $RMS_{90}(E_j)/mean_{90}(E_j)$ [%]	4.15 ± 0.05	3.48 ± 0.05

new LCFIPlus - flavor tag T. Suehara, T. Tanabe


- recently added to iLCSoft
- used by ILD and SID
- added doc and config files for:
 - vertex finding (run centrally)
 - neural net training (run centrally)
 - jet finding (run by users)
 - flavor tag (run by users)
- further improvements of performance ongoing

Grid production

J.Engels

- new grid production system developed (based on experience in LOI)
- currently finalized
 - DB scheme, backup,
- provides web based data catalogue

- the production system is effectively ready to go
- major Grid sites (DESY, IN2P3,...) will provide resources
- strategy:
- start with simulation as soon as it is validated
- produce 50% of all requested samples then the other 50%
- finalize reconstruction in the meantime

Summary & Outlook

- very active development in iLCSoft as preparation for the ILD DBD: core software, simulation and reconstruction
- much improved realism in Mokka simulation currently finalized and validated
- first complete version of new C++ tracking -> needs iteration and finalizing
- adaption of PFA and flavor tag currently addressed
- we are delayed with respect to original timeline
- need to make considerable effort now to make up for this
- -> most urgent is the validation of ILD_01
- hope to start simulation for DBD soon...