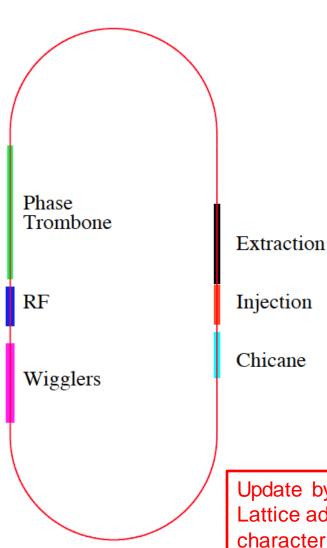
international linear collider Damping Rings Working GroupSummary Mark Palmer **GDE** April 26, 2012

KILC 2012: Daegu, South Korea



DR Sessions Overview

- Tuesday
 - Lattice Characterization
 - Layout
 - Magnets & PS
 - Cost Discussion
- Wednesday
 - Vacuum System Design & Costing
 - Electron Cloud Updates
- Thursday AM
 - TDR Session

DTC Lattice and Layout

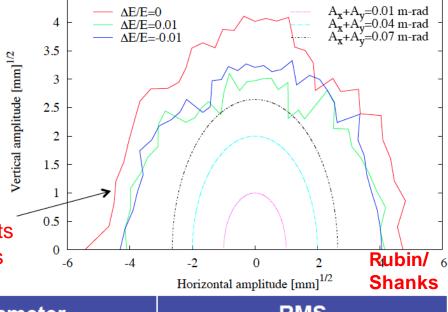
Circumference - 3238 m 5.6 μ -rad < $\gamma \epsilon_x$ < 6.4 μ -rad 54 Wigglers length 2.1 m B_{peak} 2.2 T Poles 14 Period 30cm $24ms > T_x > 12ms$ Phase trombone \rightarrow ± 0.5 λ_{β} Chicane → ± 3mm pathlength ≤ 12 - 650MHz RF cavities

 $=> \sigma_1 = 6$ mm

Update by D. Rubin – Lattice adopted June 2011. Now completing final characterizations of the 3 different operating scenarios

Tuesday

- DTC04 Lattice Evaluations
- Magnet Design & Layout Review

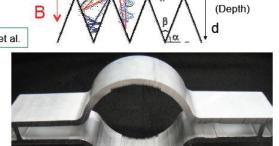

J. Conway C. Spencer

Costing Meeting

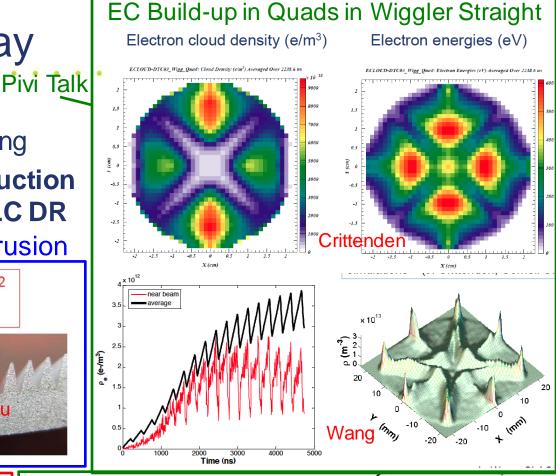
DA with misalignments & field errors

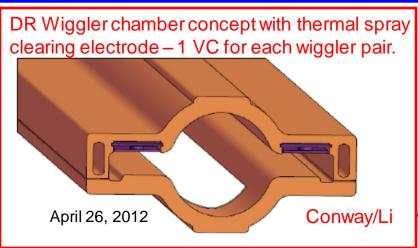
KILC 2012: Daegu, South Korea

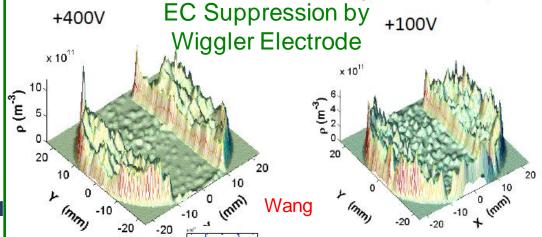
4.5


		Horizontal ampitude [mm]	Silaliks
	Parameter	RMS	
	BPM – Differential resolution	2 μm	
2	BPIVI - Absolute resolution	Ring erances 100 µm	
	Drivi – Till	valua om 10 Illiau	
	BPM button – Gain variation	or ey=2 prent 1%	
	BPM button – Gain variation for Quads + Sexts – Offset (H+V)	sing Cu. LET Algos 50 μm	
	Quads – Tilt	100 µrad	
9	Dipole – Roll	100 µrad	
	Wiggler - Offset (V only)	200 µm	
-	Wiggler - Roll	200 µrad	
			1

Wednesday


- EC Mitigations & Status
- Vacuum System Design/Costing
 - SuperKEKB VCs in production with similar designs to ILC DR


SuperKEKB Dipole Chamber Extrusion



Valley :R0.1~0.12 Top :R0.15 Angle:18~18.3°

Electron cloud assessment for TDR: plan

Electron cloud Build-up In BENDs with grooves PI: LBNL **Photon distribution Beam Instability** Input cloud density Photon generation In WIGGLERS with from build-up and distribution clearing electrodes PI: SLAC PI: SLAC PI: Cornell U. In DRIFT, QUAD, **SEXT with TiN** coating PI: Cornell U.

Conclusion

- Progress since Frascati BTR (July 2011)
 - Lattice characterization in good shape
 - New designs in hand and closing out costing exercise
 - RF System (10Hz modifications)
 - Vacuum System (particularly EC mitigation plan)
 - Magnets and Power Supply System
 - Changes for DTC lattice
 - Updated wiggler design for 10Hz operation
 - Distributed Power Supply System (greatly reduced cost)
 - Full re-evaluation of EC build-up in ring and dynamics underway (expect baseline simulations to finish soon)
 - Photon control critical ⇒ utilizes new tools from EC R&D program
 - Better understanding of sources of EC in ring
 - Now moving on to completing our TDR contributions