

iLCSoft - Status and Plans

Frank Gaede, DESY KILC 2012 Daegu, Korea, Apr 23-27, 2012

Outline

- brief overview of iLCSoft
- recent developments
 - core tools
 - Mokka simulation
 - new tracking
 - release v01-13-05
- report from 'Linear Collider Software Meeting 2012'
- Summary & Outlook

iLCSoft framework - Overview

Mokka (LLR)

http://ilcsoft.desy.de

geant4 simulation application

LCIO (DESY/SLAC)

 international standard for persistency format / event data model

Marlin

2012

23.

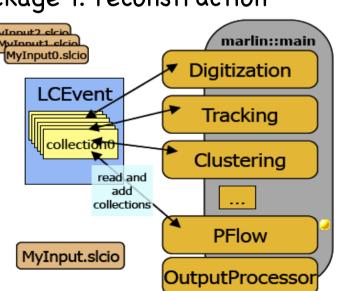
Sep

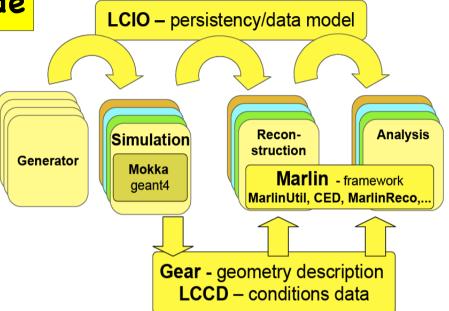
Daegu,

Gaede,

 core application framework for reconstruction & data analysis

GEAR geometry package f. reconstruction


LCCD


conditions

data toolkit (DB)

Aran • CED

3d event display

complete framework used in Monte Carlo & 'real experiments':

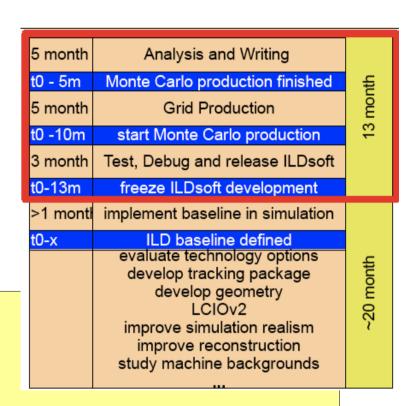
ILD detector concept studies

Calice calo testbeam

LC-TPC testbeam

EUDET - Pixel Telescope

synergies between testbeam and global detector optimization


3

timeline for iLCSoft development

 timeline for iLCSoft development in last 2-3 years was mainly driven by the requirements for the ILD-DBD

this talk: main activities:

- LCIOv2, GEAR, CED,...
- improved realism of the simulation
 - include gaps, imperfection and services
- complete re-write of tracking code!
 - old code unmaintainable and cannot easily cope with high bg
- adaption of reconstruction algorithms (PFA, Flavor tag) to new technology options (SDHcal, FPCCD,...) [not in this talk]

LCIO v2

- LCIO v2 had been planned for some time – goal: improve LCIO in backward compatible way
 - main new features:
 - direct access to events
 - simplified use of LCIO with ROOT
 - improved the event data model
 - due to lack of man power needed to de-scope from original plans postponed:
 - splitting events over files
 - partial reading of events
- v02-00 was released Sep 2011

current: v02-01-01

- EDM API extensions
 - SimCalorimeterHit::getStepPosition(int i)
 - LCReader::getNumberOfEvents()
 - Cluster::getEnergyError()
 - float[3] MCParticle::getSpin()
 - int[2] MCParticle::getColorFlow()
 - int (Sim)TrackerHit::getCellIDO()
 - int (Sim)TrackerHit::getCellID1()

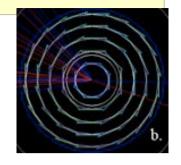
LCIO v2 Track & Trackstates

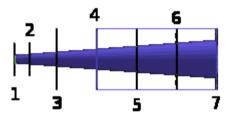
- Icio Track now has multiple TrackStates
- will store four canonical TSs:
 - AtIP, AtFirstHit, AtLastHit, AtCalo
- TS returned either by
 - identifier
 - or closest to given point
- mostly backward compatible

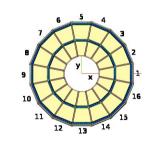
virtual	~TrackState () Destructor.
virtual int	getLocation () const =0 The location of the track state.
virtual float	<pre>getD0 () const =0 Impact paramter of the track in (r-phi).</pre>
virtual float	getPhi () const =0 Phi of the track at the reference point.
virtual float	<pre>getOmega () const =0 Omega is the signed curvature of the track in [1/mm].</pre>
virtual float	getZ0 () const =0 Impact paramter of the track in (r-z).
virtual float	getTanLambda () const =0 Lambda is the dip angle of the track in r-z at the reference point.
virtual const FloatVec &	<pre>getCovMatrix () const =0 Covariance matrix of the track parameters.</pre>
virtual const float *	<pre>getReferencePoint () const =0 Reference point of the track parameters.</pre>

	THE GRACKS GRACHAVE DECIT COMBINED TO CHIS GRACK.
virtual const TrackStateVec &	getTrackStates () const =0 Returns track states associtated to this track.
virtual const TrackState *	<pre>getClosestTrackState (float x, float y, float z) const =0 Returns track state closest to the given point.</pre>
virtual const TrackState *	getTrackState (int location) const =0 Returns track state for the given location - or NULL if not found.
virtual const TrackerHitVec &	<pre>getTrackerHits () const =0 Optionaly (check/set flag(LCIO::TRBIT_HITS)==1) return the hits that have been used to create this track.</pre>

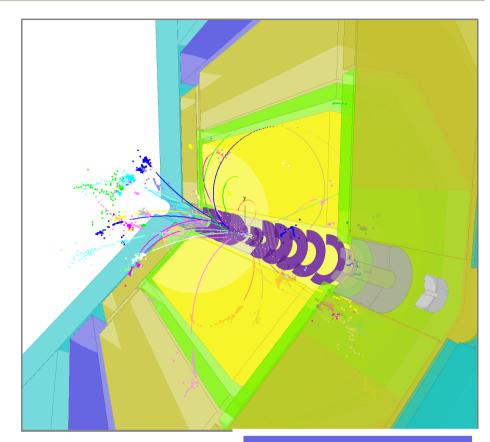
LCIOv2: 1d and 2d TrackerHits

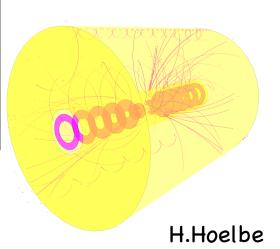

- need new tracker hit classes to properly describe 1d and 2d measurements (pixels/TPC and strips)
- TrackerHitPlanar
 - x, y, z 'space point'
 - u(theta, phi) , v(theta, phi) measurement directions (spanning vectors in the plane)
 - du, dv measurement errors
 - -> to be used for 1d and 2d (dv is strip length in 1d case)
- TrackerHitCylindrical
 - x, y, z 'space point'
 - R, Xc, Yc cylinder parameters (parallel to z)
 - dphi, dz measurement errors
 - -> to be used for 1d and 2d
- these also implement the TrackerHit interface (x,y,z, cov) for backward compatibility and code reusability (eg in event display)

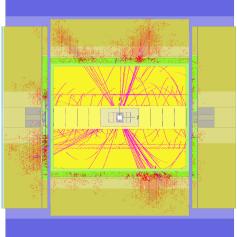

GEAR - new developments


- added SIT and SET parameters similar to VXD
 - describe (silicon) planar wafers along z-axis with phisymmetry in placement and support material

- describe (silicon) disk detectors made from petals both needed to describe the now much more realistic and detailed Si-tracking simulation
- added SimpleMaterial section in Gear parameters
 - SimpleMaterial(Name, A, Z, density, X0, Lambda)
 - need to add code to Mokka drivers to write these materials
- added MeasurementSurfaceStore (S.Aplin)
 - describes bounded measurement surfaces' coordinate systems
 - local to global transformation of tracker hit measurements

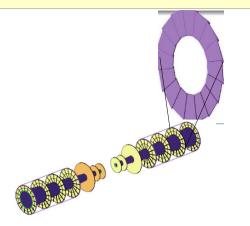


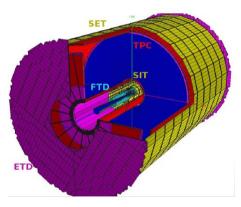



new features in CED event display

• many new features in CED, CEDViewer & MarlinCED :

- added a New View with
 - 3d transparent surfaces
 - cut open detector
- save display settings
- turn on/off detector components
- new projections:
 - r-phi ("F")
 - r-z ("S")
- toggle view of axes
- detailed User Manual

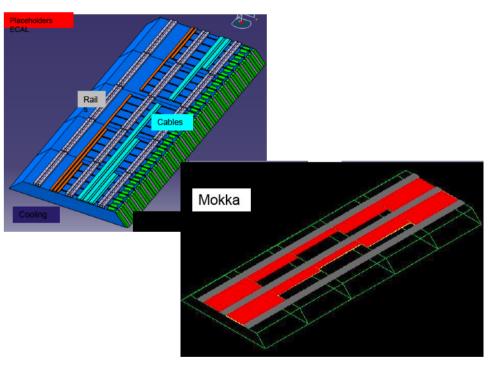



recent developments in Mokka

- major rewrite of some sub detector drivers :
 - SIT, SET, ETD FTD Muon
 - increased level of detail and realism (incl. services)
- made existing drivers more realistic:
 - TPC, AHCal, Ecal, FCal,...
- new drivers (technology options):
 - SDHCal, SciEcal
- added overall services and cables
- new models for DBD:

ILD_01_v01 "ILD simulation reference Model for DBD using Analog HCal"
ILD_02_v01 "ILD simulation reference Model for DBD using SD HCal"
ILD_03_v01 "ILD simulation reference Model for DBD using SciW Ecal and Analog HCal"

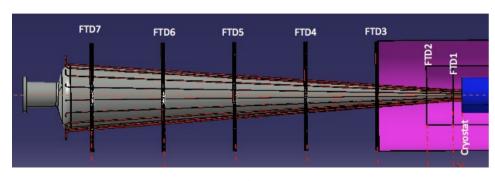
- first part ILD_OX read "ILD Option X", refers to the choice of subdetector technology options of the model
- second part _vxx refers to the software release version that describes this option for ILD



2012 23-27, Sep Korea, Daegu, I Frank Gaede, KILC12,

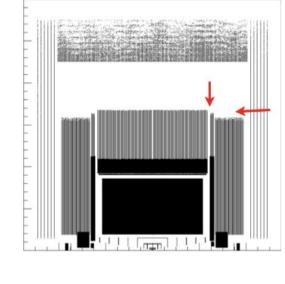
increased realism in ILD_OX models

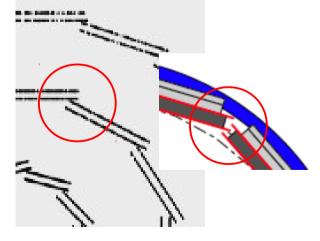
added cabling and services for TPC, ECal & Hcal (C.Clerc, G.Musat)

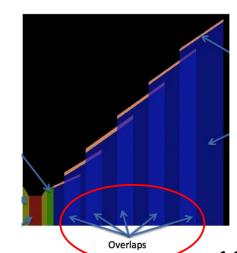

· including inner detector services as defined by R&D groups

electronics

big step forward in increasing realism of ILD detector simulation!

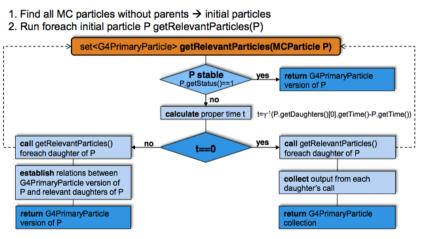

power supply cables


validation of Mokka ILD model(s)


- started validation process with volunteers nominated by the R&D groups
 - checking: overlaps, consistency w/ engineering model, hit production,...

detector	person	status
VXD	G.Voutsinas	ongoing
SIT/SET	K.Androsov	to be done
FTD	J.Duarte	to be done
TPC	S.Aplin	done
ECal	D.Jeans	done
AHCal	Sh.Lu	done
SDHcal	G.Grenier	done
FCal	A.Rosca, B.Pawlik	ongoing
Muon	A.Saveliev	ongoing

-1800 - -1900 - -2000 - -500 -500



start MC production, once all sub detectors are 'approved'

new treatment of stdhep particles

- changed treatment of heavy particle decays in Mokka:
 - use decay and lifetime from generator file (was: lifetime from geant4)
 - added extra particle decay table for 'exotic' particles (SUSY)
- changed logic for selecting particle presented to geant4

- ${\it 3. Add G4Primary Particles \ returned \ by \ initial \ call \ of \ getRelevant Particles () \ to \ G4Primary Vertex}$
 - → take MC generator life time information instead of defining "special cases"
 - improved Lorentz boost for crossing angle (both: B.Vormwald)
 - apply to complete MCParticle list incl. Vertices

new C++ tracking: MarlinTrk

- new common API for developing tracking code (TPC, Silicon, Fwd)
- provides loose coupling between patrec and fitting
- defined abstract interface IMarlinTrk and implement using KalTest/KalDet
- currently lives in MarlinTrkProcessors

cluster seeded TPC pattern recognition

FwdTracking

new forward tracking cellular automaton

SiTrackingNew

re-write of existing SiliconTracking

GEAR

IMarlinTrkSystem

create tracking geometry create IMarlinTracks

IMarlinTrack

- •holds tracker hits
- •fit the track
- extrapolate TrackState
- •propagate TrackState
- calc crossing points

MarlinKalTest

KalDet library

TPCDetector TPCMeasLayer VXDDetector

VXDMeasLayer

ROO

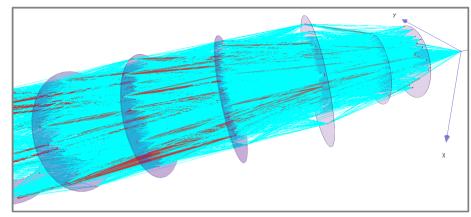
KalTest library

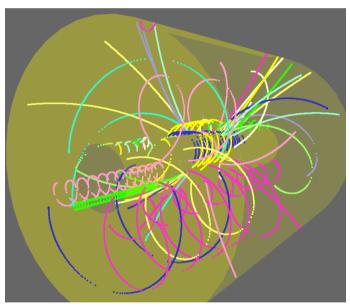
TKalTrack TDetectorCradle

Kalman Filter

new C++ tracking: patrec activities

ForwardTracking


 new forward tracking patrecusing cellular automaton
 (R.Glattauer)


Clupatra

- new TPC patrec recently:
 - fixed memory consumption
 - cleaned up code & algorithm
 - use new IMarlinTrk/MarlinKalTest

MarlinTrkProcessors

- rewrite of 'old' SiTracking and FullLDCTracking using MarlinTrk/MarlinKalTest
- recently added proper 1D strip measurements

see dedicated talk on Wednesday

many more new developments ...

- ... not covered in this talk:
- many additional small developments in core tools:
 - command line parameters and improved logging in Marlin
 - ILDConfig utility to encode/decode TrackerHits cellIDs
 - fixed bug in LCIO w/ LCSplitWriter
 - Cone surfaces in KalTest/KalDet
- some new packages:
 - new BCal reconstruction in MarlinReco
 - SpacePointBuilder: combine 1D strip hits to "3D points"
- major improvements in:
 - PandoraPFA
 - LCFIPlus (-> dedicated talk on Wednesday)
 - => see dedicated talks in ILD Analysis&Software Meetings

ILCSoft release v01-13-05

gear	v01-02
ilcutil	v00-03
lccd	v01-02
lcio	v02-01-01
CED	v01-05
Marlin	v01-02-01
RAIDA	v01-06-02
CEDViewer	v01-05
Clupatra	v00-05-01
CondDBMySQL	ILC-0-9-5
Druid	1.8
FastJet	2.4.2
FastJetClustering	v00-02
ForwardTracking	v01-02
Garlic	v2.0.4
KalDet	v01-07
KalTest	v01-05
LCFIPlus	v00-03
LCFIVertex	v00-06-01
MarlinFastJet	v00-01

MarlinKinfit	v00-01-01
MarlinPandora	v00-07
MarlinReco	v01-01-01
MarlinTPC	v00-09-01
MarlinTrk	v01-05
MarlinTrkProcessors	v01-04
MarlinUtil	v01-05-01
Mokka	mokka-07-07-p07
Overlay	v00-11-01
PandoraAnalysis	v00-03
PandoraPFANew	v00-08
pathfinder	v00-01-01
CLHEP	2.1.1.0
QT	4.7.4
cernlib	2006
geant4	9.5.p01
gsl	1.14
java	1.6.0
mysql	5.0.45
root	5.28.00f

core tools
application packages
external packages

afs reference installations

 provide reference installations in afs for usage from anywhere on ScientificLinux and compatible platforms:

```
/afs/desy.de/project/ilcsoft/sw/_OS_/v01-13-05
```

- you can directly run from these installations, .eg:
 - . /afs/desy.de/project/ilcsoft/sw/x86_64_gcc41_sl5/v01-13-05/init_ilcsoft.sh
 Marlin mysteer.xml
- you can link your own libraries against these
- plan to have other OSs in the future (as requested !?)
- you can use ilcinstall tool for your own installation
- -> https://svnsrv.desy.de/viewvc/ilctools/ilcinstall/tags/v01-13-05/

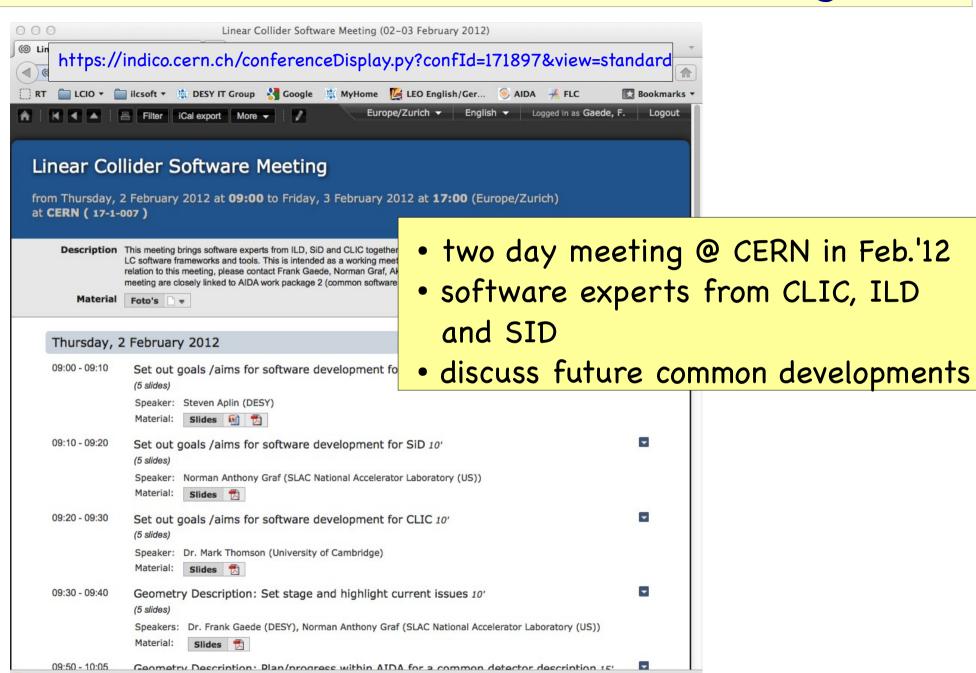
new package ILDConfig

- ILDConfig configuration and steering files:
 - combination of MokkaDBConfig, StandardConfig, LCFI_MokkaBasedNets:
 - Mokka steering
 - Mokka models (DB dump)
 - Marlin steering (stdreco)
 - flavor tag NNs
- release independent of iLCSoft in order to decouple configuration changes/releases from code releases
- version names start as corresponding iLCSoft release:
- current version ILDConfig v01-13-05 to be followed by e.g.
 - v01-13-05-p01
 - v01-13-05-p02_special
 - v01-13-05-p03
- version tag will be used in filenames of centrally produced data to uniquely identify software and configuration!

ILD standard simulation/reconstruction

```
# HOWTO run Mokka and Marlin examples
# with standard configuration
# F.Gaede, DESY
# 12/2011: F.G.: updated to new ILD 01 dev model
# 01/2012: J.E.: updated to new ILD 0{1.2.3} v01 models
These little examples server as an ultra quick introduction on
# how to run ilcsoft programs and as a mini-test after installation
# of a new (complete) ilcsoft release.
# Have a look at the scripts (mokka-wrapper.sh) and the
# steering files (bbudsc 3evt stdreco.xml) for more details.
# 1. --- initialize the current ilcsoft release, e.g. --
 . /afs/desy.de/project/ilcsoft/sw/x86_64_qcc41_sl5/v01-13-05/init_ilcsoft.sh
# MARLIN_DLL=libMarlinReco.so:libPandoraAnalysis.so:libMarlinPandora.so:libLCFIVertex.
so:libCEDViewer.so:libEutelescope.so:libMarlinTPC.so:libOverlay.so
#-- so these packages need to be present in the release for the standard examples
# 2. ---- run a Mokka example -----
 export PATH=$PWD/../../MokkaDBConfig/scripts:$PATH
 export MOKKA DUMP_FILE=$PWD/../../MokkaDBConfig/mokka-dbdump.sql.tqz
 mokka-wrapper.sh -M ILD 01 v02 bbudsc 3evt.steer
# the above starts a MySQL server and populates it with a dump of the Mokka central DB
# you can also run Mokka directly (using the central DB):
 Mokka -M ILD 01 v02 bbudsc 3evt.steer
# to make sure that the extra partice tables (for SUSY etc) is loaded:
 Mokka -M ILD 01 v02 -e ../../MokkaDBConfig/particle.tbl bbudsc 3evt.steer
 mokka-wrapper.sh -M ILD_01_v02 -e ../../MokkaDBConfig/particle.tbl bbudsc_3evt.steer
    this creates the file:
                            bbudsc 3evt.slcio
#- example: examine the collections in the file:
 anajob bbudsc_3evt.slcio
```

```
reconstruct these events:
 Marlin bbudsc 3evt stdreco.xml
              bbudsc 3evt REC.slcio
#-- creates:
              bbudsc 3evt DST.slcio
#- example: dump the details of the 2nd event in the DST file:
  dumpevent bbudsc_3evt_DST.slcio 2 | less
# 4. --- view the result in the event display
#--- start the event display (server) first:
  alced &
#--- view rec or DST events:
  Marlin bbudsc_3evt_viewer.xml
  Marlin bbudsc_3evt_viewerDST.xml
# b) (new in v01-10)
# or start both, glced and Marlin in one go:
ced2go -d GearOutput.xml bbudsc_3evt_REC.slcio
                                                                   93,0-1
                                                                                98%
```


- StandardConfig/current sub package with current steering files for ILD
- defines canonical ILD simulation and reconstruction
- README is "shortest introduction to running iLCSoft for ILD"

PART I: Summary & Outlook

- very active development in iLCSoft framework driven by preparation for the ILD DBD:
 - LCIOv2, Gear extensions, new MarlinTrk and PatRec code,...
 - greatly improved realism in Mokka simulation in particular for Si-Tracking detectors – currently validated
 - new technology options: FPCCD, SDHcal
 - not covered in this talk: PFA & LCFIVertex,...
- we are in quite good shape but some work still to be done until DBD!
 - hope to start simulation for DBD soon...

plan to continue to provide iLCSoft as software tool beyond the DBD for international LC detector R&D

PART2: LC Software Meeting

Linear Collider Software Meeting Close Out

Frank Gaede (DESY), Norman Graf (SLAC), Akiya Miyamoto (KEK), Mark Thomson (U.Cambridge)

CERN, Feb 2-3, 2012

common simulation

- general consensus to work towards a common simulation application
 - build on the ongoing work for detector description and geometry (AIDA WP2)
- setup a working group to work towards that goal
- ·should start quite soon
 - this summer when DBD software work reduces
- define a geometry API for reconstruction, e.g. Gear

PFA

- need to work on SDHcal and DHcal reconstruction
- develop clustering algorithms in pandora

LCIO

- no immediate action items identified
- Whizard will provide LCIO MCParticle files in the future

Common production

- no immediate action items identified
- already very good collaboration and splitting of the work load by Generator group and SCTG
- analysis groups need to make requests for number of (bg) events they need
 - backed up by 4-vector (fastsim) study

Tracking

- general consensus to work towards a common track reconstruction package in C++
- in context of AIDA WP2
- implementation of FTF and TRF like algorithms for Si-Tracking

LCFIPlus

- lots of progress with vertexing and flavor tagging
- some minor issues to be addressed
- e.g. singleton pattern for data model, documentation

Common DST Format

reached consensus on collections on DST:

- MCParticles: one collection.
 - Complete Generator Event
 - Any particle that leaves a hit + its genealogy
- Tracks and Clusters: one collection. Needed for training of b-tagging
- PFO collection: one default collection of PandoraPFA PFOs
- Truth linking between rec MC.
 - Comparison between concepts to be done
- LCFIVertex objects: Primary and secondary vertices. Corresponding ReconstructedParticles.
- BCAL particles
- V0 particles
- DefaultAnalysisPFOs: Consolidated list of particles belonging to the BCAL particles, V0 particles, and particles belonging to the LCFI secondary vertices