Top Higgs Yukawa Coupling Analysis – Status Report

Hajrah Tabassam Quai-i-Azam University, Islamabad

ON BEHALF OF:

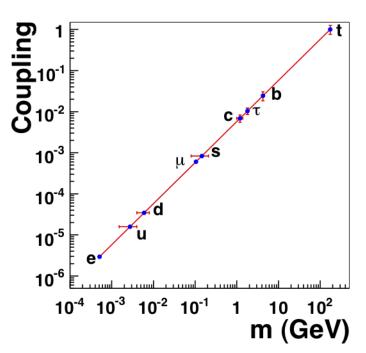
R. Yonamine, T. Tanabe, K. Fujii, KEK Japan

T. Price, University of Birmingham UK

V. Martin, University of Edinburgh UK

Content

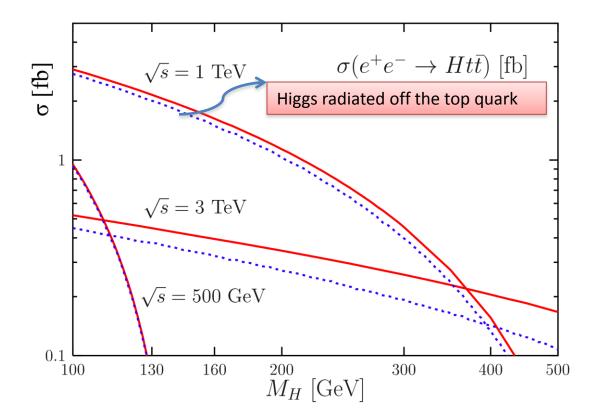
- Motivation
- Top Yukawa coupling at ILC
- Signal and background
- Past studies
- Current Studies
- Summary/Future work


Motivation

Discovery of Higgs at LHC

Investigation of Higgs boson profile starts at LHC and continue

with higher precision at ILC


- Mass
- Spin, charge and parity
- BRs, total width, coupling
- Self coupling
- Coupling can be done with precision at ILC.

- precision test of the Higgs sector of the SM
- Will show largest deviations to new physics (SUSY, ED, Little H, TC)

Top Yukawa coupling at ILC

- The production cross section for associated Higgs boson with $t\bar{t}$ pair at $\sqrt{s} = 0.5$, 1 and 3 TeV.
- 500 GeV is the threshold energy so interesting to study.
- 1 TeV is the energy with higher cross section

Signal and Background Processes

- $e^+e^- \rightarrow \overline{t} tH \rightarrow \overline{b}W^- bW^+ \overline{b} b$
- Three channels corresponding to the W decay.
 - Leptonic ~ 4%
 - Semi-leptonic ~ 28%
 - Hadronic ~ 49%
- Higgs Strahlung has small contribution so negligible
- t̄tZ: very close to the signal in cross section
- *t* t: very large cross section and often mimic signal

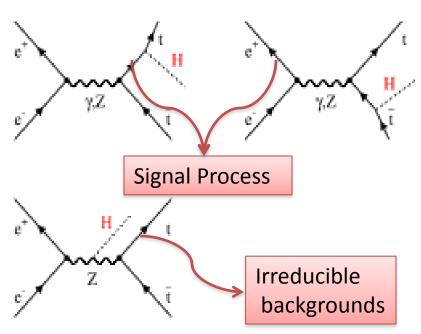
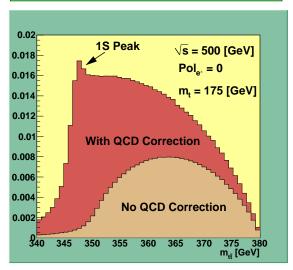


Fig. 1. Lowest order Feynman diagrams of the process $e^+e^- \rightarrow t\bar{t}H$

Past Work for ILC


Fast simulation Results

[PRD 84, 014033 (2011)]

differential cross section of tth with respect to ttbar invariant mass

- Given:

 - L = 1000 fb⁻¹
- The fast simulation study showed that g_t can be measured to approx. 10% (stat.).

	6 Jet + Lepton S/√(S+B)	8 Jet S/√(S+B)	Combined Significance	Combined $\Delta g_t / g_t$
(±0.0, ±0.0)	3.50	2.59	4.35	11.5
(-0.8, +0.3)	4.55	3.35	5.65	8.8

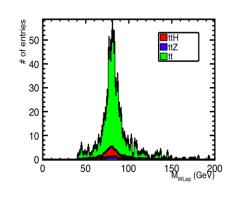
(stat. error only)

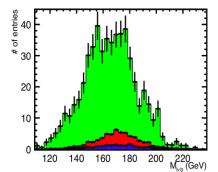
R. Yonamine (Sokendai), T. Tanabe (Tokyo), K. Ikematsu, K. Fujii, Y. Kiyo (KEK), Y. Sumino (Tohoku), S. Uozumi (KNU), H. Yokoya (CERN)

Top Higgs Yukawa Coupling Measurements for L = 1000 fb⁻¹, Vs =500 GeV

 $e^+e^- \rightarrow \overline{t} \ tH \rightarrow \overline{b} W^- \ bW^+ \ \overline{b} \ b$ Focus on semi-leptonic final state with one W decaying into lepton and neutrino and other W decaying into light jets

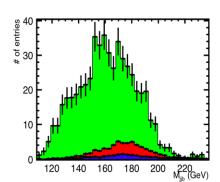
H. Tabassam, V. Martin
Semi-Leptonic Channel

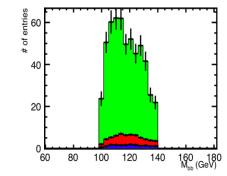

- Identified leptons are removed from the sample
- remaining particles are forced into 6 Jets using JetFinder algorithm
- Jets pass LCFIVertex reconstruction [arXiv:0908.3019v1]
- LCFI flavour tagging is used to separate light and b-jets
- Jets are sorted in descending order of b-tag value
- top four jets with highest b-tag value are selected as b-jets
- Light jets are used to reconstruct hadronic W
- Some selection variables used for background separation are:
 - Energy and momentum of reconstructed lepton, jets and missing energy
 - B-tag of 3rd and 4th jets, chisq


Top Higgs Yukawa Coupling

Measurements for *L* = 1000 fb⁻¹, *Vs* =500 GeV

Final scaled distributions for Higgs and top masses after applying cuts on all selection variables





The efficiency and effective cross section for signal $(\overline{t} tH)$ and background $(\overline{t} tZ, \overline{t} t)$

Final State	ϵ_{sel} (%)	$\sigma_{eff} \text{ (fb}^{-1})$
$t ar{t} H$	7.57 ± 0.19	0.04
t ar t	0.11 ± 0.00	0.29
$tar{t}Z$	2.76 ± 0.12	0.02

RESULTS:

For $L = 1000 \text{ fb}^{-1}$, $\sqrt{s}=500 \text{ GeV}$, the measured uncertainty in the top-Higgs-Yukawa coupling is 27.9%

Parameter	value (%)
$rac{\Delta \sigma_{eff}^{BG}}{\sigma_{eff}^{BG}}$	5
ϵ_{sel}	7.6 ± 0.2
$ ho_{sample}^{sel}$	12.5 ± 0.3
$\left(rac{\Delta g_{tar{t}H}}{g_{tar{t}H}} ight)_{stat}$	21.6
$\left(\frac{\Delta g_{t\bar{t}H}}{g_{t\bar{t}H}}\right)_{syst}$	17.6
$\frac{\Delta g_{t\bar{t}H}}{g_{t\bar{t}H}}$	27.9

Current Work

Strategy

- Looking at tth events with $m_H = 120 \text{ GeV/c2}$, $\sqrt{s} = 500 \text{ GeV}$ and 1 TeV.
- $e^+e^- \rightarrow \overline{t} tH \rightarrow \overline{b}W^- bW^+ \overline{b} b$
- Currently samples are generated with
 - iLCSOft v01-13-05,, and
 - geant4.9.5
 - ILDConfig v00-02
- Mass production sample will be used as soon as available
- Different parts of the analysis are being studied at different places, with the aim of combining them for DBD. Some of our results are presented here.

Update for Semi-leptonic channel at

vs = 1 TeV [Tony price, Victoria Martin]

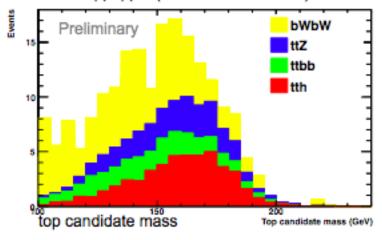
- Simulated and reconstructed 10k events of the signal and
- $e^+e^- \rightarrow \overline{t} tH \rightarrow \overline{b}W^- bW^+ \overline{b} b$
- Focus on semi-leptonic final state with one W decaying into lepton and neutrino and other W decaying into light jets
- Final state is 1 lepton, missing energy, 6 Jets with 4 b-jets
- Isolating leptons from the sample.
- Remove the leptons and force remaining particles into 6-jets (JetFinder Algorithm)
- High momentum Lepton and large missing momentum signature
- In the process of optimising cuts to reduce background.

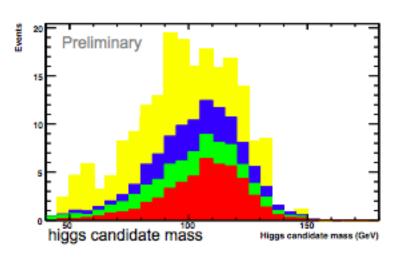
Update for Hadronic channel at

vs = 1 TeV [H. Tabassam, Victoria Martin]

- $e^+e^- \rightarrow \overline{t} tH \rightarrow \overline{b}W^- bW^+ \overline{b} b \rightarrow \overline{b}2j b2j \overline{b} b$
- This channel has 4 light and 4 b-jets in final state with 8 jets in total
- Final state is more crowded
- We will have more combinations
- Four b-jets are used to reconstruct two tops and Higgs particle
- To reduce combinatorial backgrounds, minimisation of χ^2 technique will be used

$$\chi^{2} = \frac{(m_{2j} - M_{H})^{2}}{\sigma_{H}^{2}} + \frac{(m_{2j} - M_{W_{1}})^{2}}{\sigma_{W_{1}}^{2}} + \frac{(m_{3j} - M_{t_{1}})^{2}}{\sigma_{t_{1}}^{2}} + \left\{ \frac{(m_{2j} - M_{W_{2}})^{2}}{\sigma_{W_{2}}^{2}} + \frac{(m_{3j} - M_{t_{2}})^{2}}{\sigma_{t_{2}}^{2}} \right\}_{8j}$$


 A number of selection variables will be used to separate the signal and background e.g energy and momentum of the reconstructed particles, btags information, mass cuts.


Current Top Yukawa coupling study at $\sqrt{s} = 500 \text{ GeV}$

[R. Yonamine, T. Tanabe, K. Fujii]

- Full simulation study has been started.
- Some differences:
 - Event generators (tth & ttZ) include the non-relativistic QCD effects on an event-by-event basis.
 - Include tth->bqqbqqbb final state.
 - Include background of ttbar with a hard gluon from the top (ttbb)
- Event reconstruction based on
 - Isolated lepton finding/veto, event shape, jet clustering, b-tagging, mass reconstruction through jet combination.
- tth->bqqbqqbb after event selection (lumi = 1ab⁻¹, polarized beams)
 - Signal yield: 29
 - Background: 33(ttbar), 24(ttZ), 24(ttbb)
 - Significance ~2.9 (stat.)

tth->bqqbqqbb (after event selection)

Summary/Future Plans

- We are starting to develop a strategy for our analysis.
- We intend to keep working on this analysis, and we are collaborating to get reasonable results for DBD.
- Vs = 500 GeV and 1 TeV are currently being studied
- Once the centrally reconstructed samples are ready, will employ them for the study.