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New since Interim Report 

• Pseudo-Pk / Ql studies for flat gradients 

• Operation close to quench with beam loading  

• Klystron saturation studies with beam loading 

 

• Include background for rf power overhead and 
gradient margins (cost drivers)? 

• Need to explain principles of Pk/Ql control  
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Impact of beam loading 

J. Carwardine: MSK Seminar,16 March 2012 
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Operation at 380MeV on ACC67 
(13 cavities) 
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• Flattened individual gradients to <<1% p-p 
• Several cavities within 10% of quench  
• ‘Crash test’: very rapid recovery of 800us / 

4.5mA after beam trip 
• Ramped up current from ~zero to 4.5mA with 

ACC67 gradients approaching quench 
• ‘Cavity gradient limiter’ to dynamically 

prevent quenching without turning off the rf 

The limiting cavity is within 5% of quench 

9mA Studies: beam operation close to cavity gradient limits 
(4.5mA/800us bunch trains) 



9mA Studies: evaluating rf power overhead requirements 
(4.5mA/800us bunch trains) 
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• Klystron high voltage was reduced 
from 108KV to 86.5KV so that the rf 
output just saturated during the fill 

• The required beam-on power ended 
up being ~7% below saturation 

Response to step up is slower because the 
klystron cannot deliver the power demanded 



Extrapolation to ILC baseline 

• Long bunch trains, heavy beam loading 

– 6mA / 800us demonstrated (baseline) 

– 9mA / 800us marginally achieved (upgrade) 

– Energy stability demonstrated 

 

• Vector Sum control of RF unit 

– Operation of RF unit demonstrated with 24 cavities and 16 caviities 

– Relevance to KCS control…? 

 

• Gradient 

– FLASH: average is ~28MV/m, but cavities go to 35MV/m 

– Gradient spread is comparable 

– Lorentz-force detuning 
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Extrapolation to ILC baseline 

• Pk/Ql control 

– Demonstrated flat gradient solutions to << 1% pk-pk 

– ILC baseline has more knobs, so easier 

 

• Operation close to quench 

– Several cavities within 10% of quench at 4.5mA, 800us 

– One cavity within 5% of quench 

 

• Klystron overhead 

– Preliminary results: operation within 7% of saturation 

– Need to evaluate effect on energy stability 



Extrapolation to ILC baseline 

• Operability 

– Ramp-up to 4.5mA, 800us within 10% of quench 
demonstrated without quenching 

– Rapid recovery after quench 

– Quench detection / prevention with beam loading 

 

• Taking credit for FLASH FEL operations… 

– Many 1000’s hours of routine operation 

– LLRF control and automation 

– Energy and arrival time stability better than RTML 
requirements 


