international linear collider

Damping Rings: Vacuum System Sessions Overview

EC Mitigation Plan

Mark Palmer GDE

April 25, 2012

KILC 2012: Daegu, South Korea

Today's Sessions

AM Sessions

İİL

- **8:30-10:00**
 - This presentation
 - DR Vacuum System Overview – Y. Li, J. Conway
 - DR Vacuum Component Overview – J. Conway
- **10:30-12:30**
 - SuperKEKB Vacuum
 System Y. Suetsugu
 - Vacuum System Discussion

- PM Sessions
 - **14:00-15:30**
 - DR Vacuum System
 Costing Plan M. Palmer
 - DR Vacuum Chamber Costing – J. Conway, Y. Li
 - Comments on SuperKEKB Costing – Y. Suetsugu, K. Kanazawa
 - **16:00-18:00**
 - ECLOUD Evaluations for the ILC DR – M. Pivi
 - Costing Discussion

Primary Goals For Today

- Principal focus is a review of the DR Vacuum System
 - Design and Components
 - Comparison with SuperKEKB plans
 - DR Costing
 - Improving the cost estimate with inputs from the SuperKEKB vacuum system
- Ultimately, we are targeting a complete cost estimate for the TDR on the early May timescale
- We will also get an update on the status of the EC evaluations for the new ILC DR lattice
 - Ultimately, these evaluations will help us determine whether we can operate a single e+ damping ring after the planned high current upgrade.

April 24, 2012

DR EC Mitigation Outline

- DR Parameters
- EC Working Group Recommendations
- Expected Performance for the 3.2 km DR
- Introduction to the conceptual design

DR Parameters

				TDR Operational Baseline				Upgrade		
				Nominal 5 Hz mode 10		10 Hz mo	10 Hz mode for low		Luminosity upgrade	
						$E_{\rm cm}$ ru	inning		(5Hz)	
				e-	e+	e-	e+	e-	e+	
	Number of damping rings]	1]	1	1	2	
	Number of bunches per ring	n_b		13	12	13	12	262	5 1312	
	Particles per bunch	N	$ imes 10^{10}$	2.	.0	2.	.0		2.0	
	Average bunch separation		ns	8.2	23	8.2	23	4.12	8.23	
	Average current		mA	38	389.2 389.2		778.	6 389.2		
Extracted	beam									
	Extracted horizontal emittance	e_x	nm	0.57	0.57	0.60	0.61	0.57	0.57	
		ge_x	$\mathbb{m}\mathbf{m}$	5.5	5.5	5.9	6.0	5.5	5.5	
	Extracted vertical emittance*	e_y	pm	2.00	2.04	2.06	2.14	2.00) 2.04	
		ge_y	nm	19.6	20.0	20.1	20.9	19.6	5 20.0	
	RMS rel .energy spread		%	0.1	10	0.12	0.137		0.110	
	RMS bunch length		mm	6	.0	6.0	6.0		6.0	
	Maximum allowed transverse jitter		$S_{x,y}$	0	.1	0	.1		0.1	
* Calculate	d assuming each ring is corrected to 2pm	ı equilil	orium vertic	al emittance						
Damping t	imes & Equilibrium Emittance									
	Vertical damping time	τ_y	ms	23	3.9	17.7	12.9		23.9	
	Horizontal damping time	τ_x	ms	23	3.9	17.7	12.9		23.9	
	Longitudinal damping time	$ au_s$	ms	11	.9	8.8	6.4		11.9	
	Equilibrium horizontal emittance	e_x	nm	0.	57	0.60	0.64		0.57	
	Normalized eq. horizontal emittance	ge_x	$\mathbb{m}\mathbf{m}$	5	.5	5.9	6.3		5.5	
	Equilibrium vertical emittance	e_y	pm	2	.0	2	.0		2.0	
	Normalized eq. vertical emittance	ge_y	nm	19	9.6	19	9.6		19.6	
RF & Wigg	gler									
	Total energy loss per turn		MeV	4	.5	6.1	8.40		4.53	
	Wiggler energy loss per turn		MeV	3	.8	5.4	7.66		3.79	
	Arc energy loss per turn		MeV	0	.7	0.7	0.74		0.74	
	Ring Duty Cycle		%	100	0%	100%	50%		100%	
	Beam power		MW	1.	76	2.38	1.63	3.53	3 1.76	
	Wiggler period		m	0.	30	0.	30		0.30	
	Wiggler length		m	2.	10	2.	10		2.10	
	Number of wigglers			5	4	5	4		54	
	Total length of wiggler		m	11	3.4	11	3.4		113.4	
	Wiggler field	В	Т	1.	51	1.8	2.16		1.51	
	Momentum compaction	a,		3.31	E-04	3.3E-04	3.3E-04		3.3E-04	
	Total RF voltage	- V	MV	14	.0	17.0	22.0		14.0	

ίiί

KILC 2012: Daegu, South Korea

Key Points

- Our principal EC evaluations have been carried out for the "5 Hz Low Power" operation
 – Status update from M. Pivi this afternoon
- 2 additional challenging operating modes
 - 10 Hz operation with significantly increased photon load in the wiggler region
 - High power operation with nearly double the operating current in the DR
 - The 2 positron ring option is our baseline option in this case
 - Would prefer, however, to have sufficiently good EC control that a 2nd positron ring is not necessary

EC Working Group Baseline Mitigation Plan

Mitigation Evaluation conducted at satellite meeting of ECLOUD`10 (October 13, 2010, Cornell University)

EC Working	Group Baseline I	Mitigation Recomm	nendation
------------	------------------	-------------------	-----------

	Drift*	Dipole	Wiggler	Quadrupole*
Baseline Mitigation I	TiN Coating	Grooves with TiN coating	Clearing Electrodes	TiN Coating
Baseline Mitigation II	Solenoid Windings	Antechamber	Antechamber	
Alternate Mitigation	NEG Coating	TiN Coating	Grooves with TiN Coating	Clearing Electrodes or Grooves

*Drift and Quadrupole chambers in arc and wiggler regions will incorporate antechambers

- Preliminary CESRTA results and simulations suggest the presence of *subthreshold emittance growth*
 - Further investigation required
 - May require reduction in acceptable cloud density ⇒ reduction in safety margin
- An aggressive mitigation plan is required to obtain optimum performance from the 3.2km positron damping ring and to pursue the high current option

Comparison of 6.4 and 3.2 km DR Options

S. Guiducci, M. Palmer, M. Pivi, J. Urakawa on behalf of the ILC DR Electron Cloud Working Group

ILC Physics Advisory Committee Meeting - Taipei, Taiwan

Vacuum System Design Approach

- Recently completed ERL conceptual design at Cornell
 - Utilize design concepts and costs from that effort wherever possible
 - Implement EC mitigation methods based on chambers developed for SLAC and CESRTA R&D efforts as well as SuperKEKB designs
- Prepare a preliminary costing
- Cross-check with SuperKEKB costs
- "Official" cost roll-up needed by May 8 or 9
- Document for the TDR by late May or early June