

GDE Summary

A. Yamamoto, N. Walker, and Marc Ross ILC-GDE Project Managers

KILC12-Closing Plenary, 12-04-26

KILC12, 12-04-26

GDE Summary

1

Outline

GDE Technical update/progress, since LCWS11, Granada

- SCRF and Beam Test Facilities
 - Gradient yield, after Sept. 2011
 - Test facilities: FLASH, STF/QB, NML, and ATF,
 - Industrialization studies in contracts w/ RI, AES, MHI, Hitachi, Toshiba, and BN

– CFS

İİL

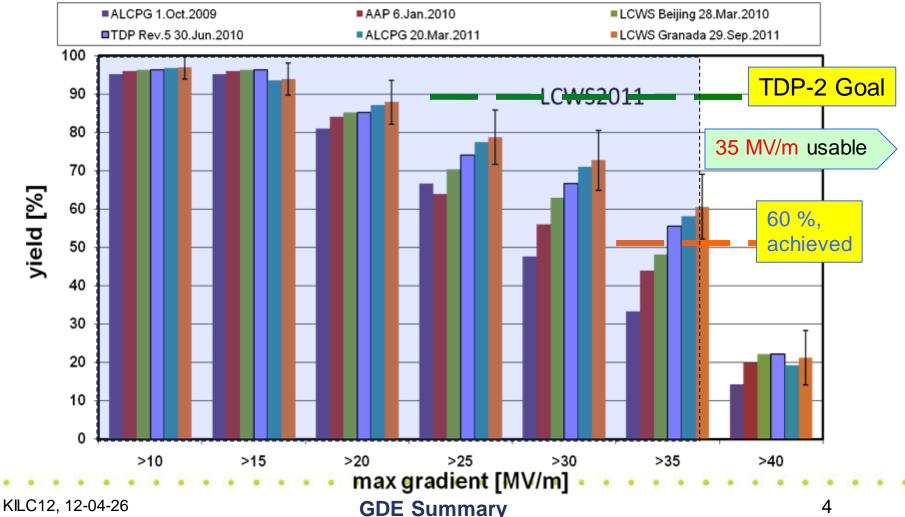
- Progress in two categories: Flat and Mountainous layout
- Detector hall review
- Accelerator System
 - Damping ring design
 - Target R&D
 - ML lattice and parameters

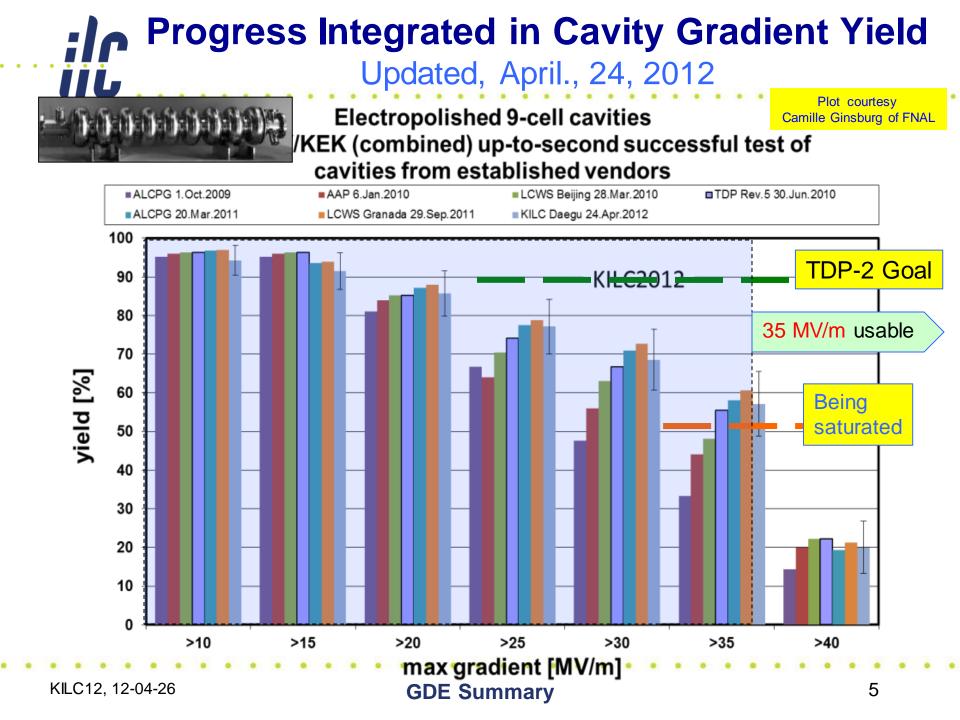
Technical Design Report

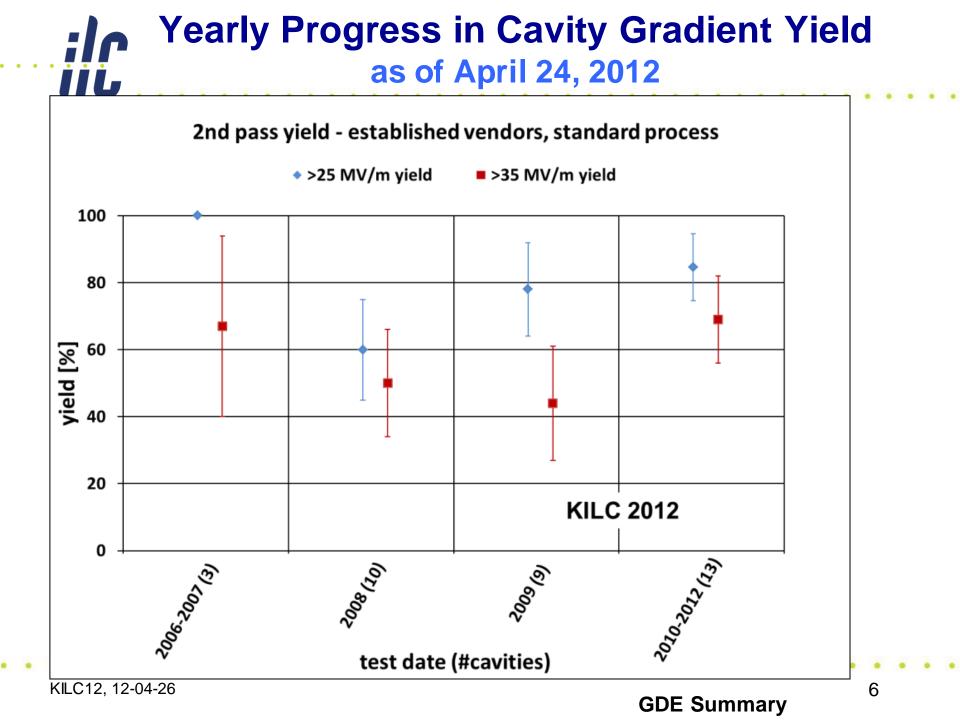
- Progress in writing and plan to complete it by Dec. 2012

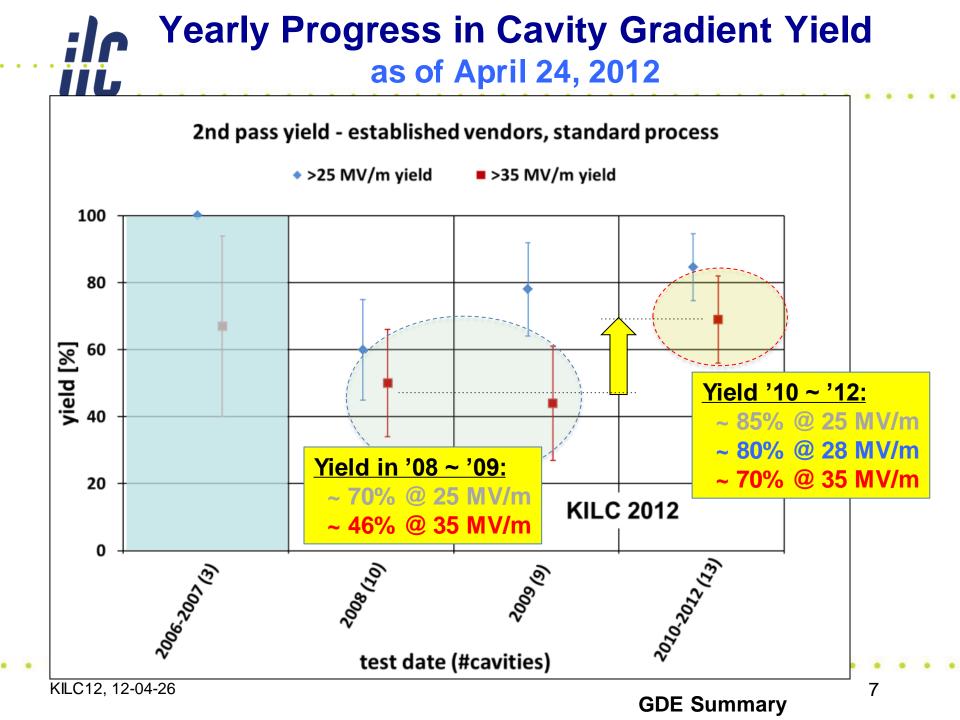
Technical studies beyond TDR

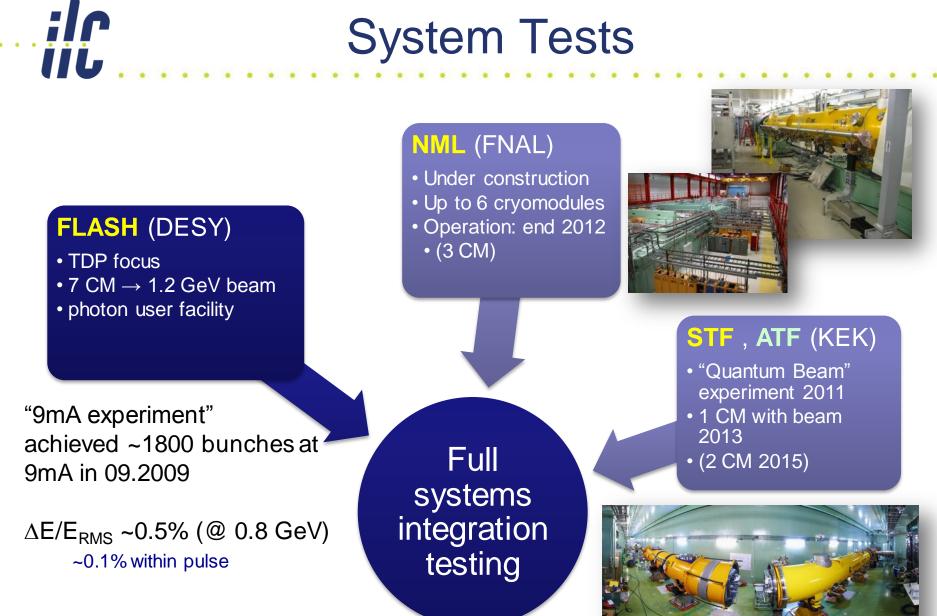
- R&D: such as high-gradient, industrialization, target, and ...
- Study: to be prepared for variety of energy requirements including upgrade up to 1 TeV

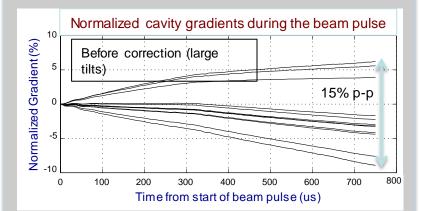

KILC12, 12-04-26

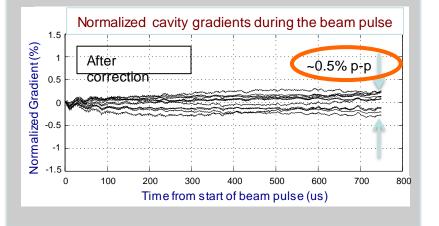

Plan and Progress in SCRF/ATF


Year	07	200	8 2	2009	2	010	2011	20	12
Phase		Т	DP-1				TDP-	2	
Cavity Gradient in v. test to reach 35 MV/m		→ Yi	eld 50)%		1	> Yield	90%	/0
Cavity-string to reach 31.5 MV/m, with one- cryomodule		Global effort for string assembly and test (DESY, FNAL, INFN, KEK)			ng	We	are h	ere	
System Test with beam acceleration				H (DE TF2//			L (FNAL) ())	
Preparation for Industrialization				P	Prod		on Techn R&D	olog	У
Communication with industry:	20	011-201	I2: Mas	s prod	uctio	on stu	dies in con	tract	

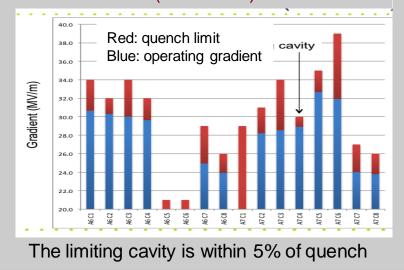

Progress Integrated in Cavity Gradient Yield Updated, Sept., 2011 Electropolished 9-cell cavities KEK (combined) up-to-second successful test of



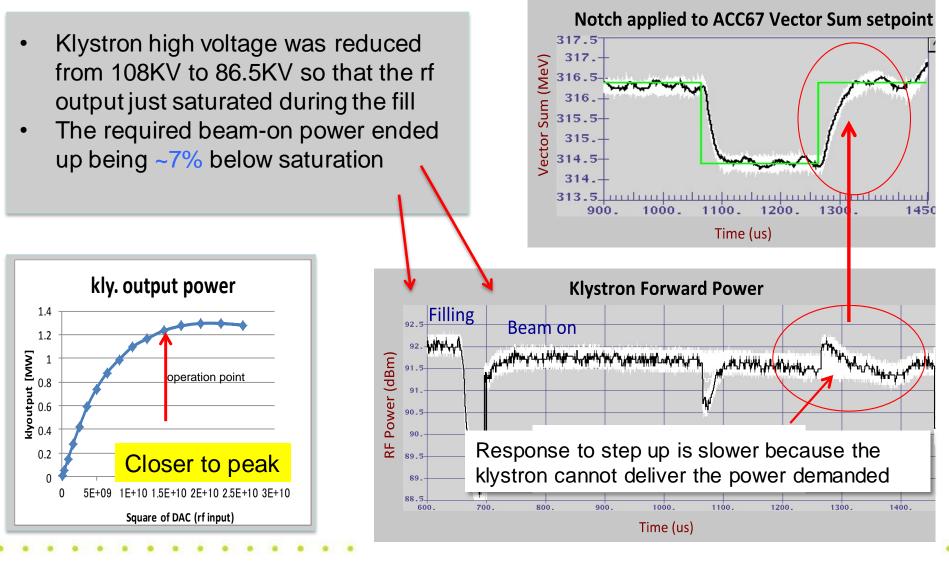

System Tests

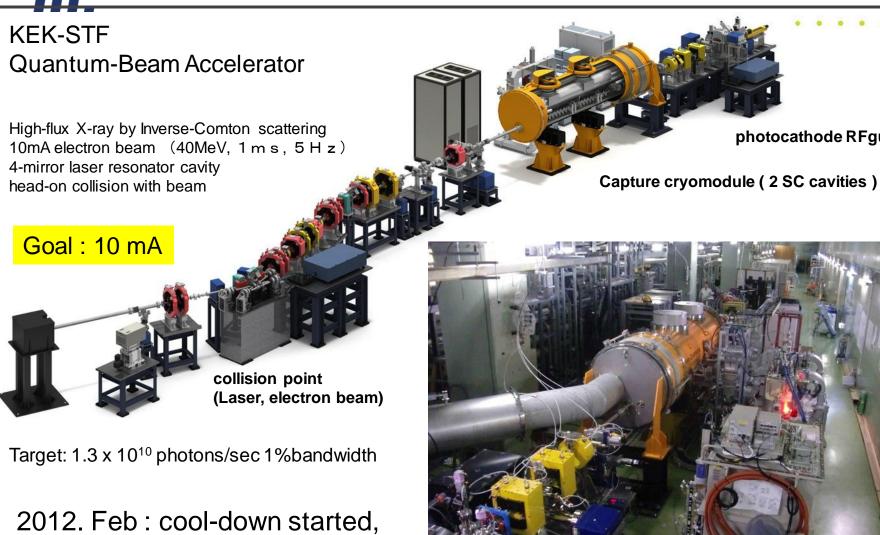


KILC12, 12-04-26


FLASH 9mA Studies: beam operation close to cavity gradient limits (4.5mA/800us bunch trains)

Tailored cavity Loaded-Qs to cancel beam-loading induced gradient tilts


Operation at 380MeV on ACC67 (13 cavities)


- Flattened individual gradients to <<1% p-p
- Several cavities within 10% of quench
- 'Crash test': very rapid recovery of 800us / 4.5mA after beam trip
- Ramped up current from ~zero to 4.5mA with ACC67 gradients approaching quench
- 'Cavity gradient limiter' to dynamically prevent quenching without turning off the rf

KILC12, 12-04-26

9mA Studies: evaluating rf power overhead requirements (4.5mA/800us bunch trains)

STF Quantum-Beam experiment

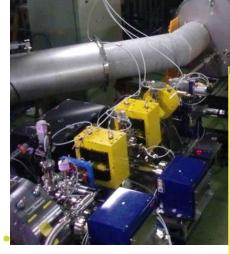
April : beam acceleration

KILC12, 12-04-26

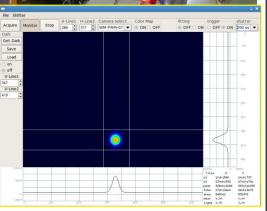
GDE Summary

photocathode RFgun

STF Quantum-Beam experiment


KEK-STF Quantum-Beam Accelerator

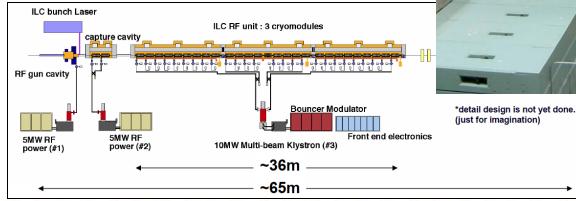
Beam acceleration (40 MV) and transport for 1 ms, successful! April, 2012


> collision point (Laser, electron beam)

Target: 1.3 x 10¹⁰ photons/sec 1%bandwidth

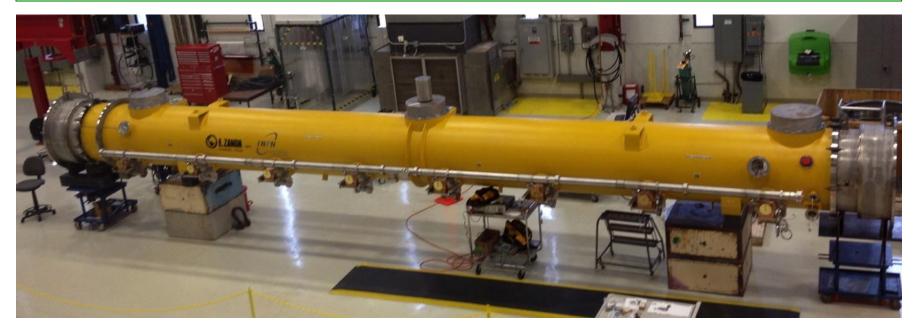
2012. Feb : cool-down started, April : beam acceleration

Captu



KILC12, 12-04-26

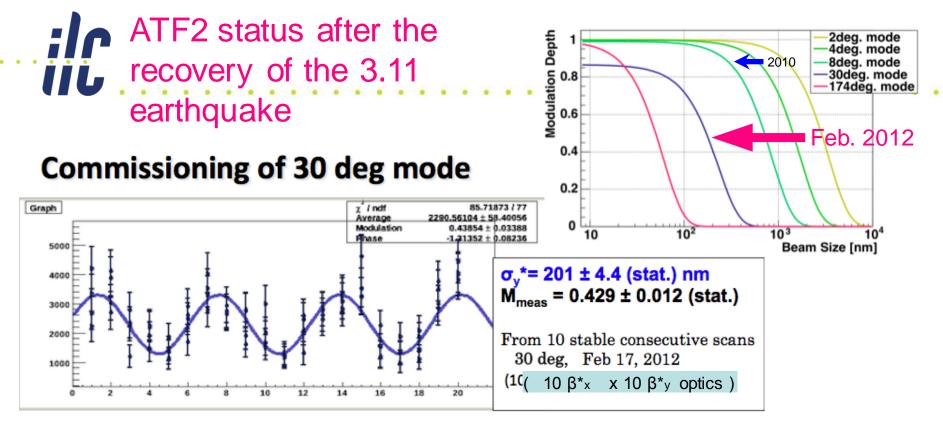
IC Beam Acceleration Test Plan at FNAL



KILC12, 12-04-26

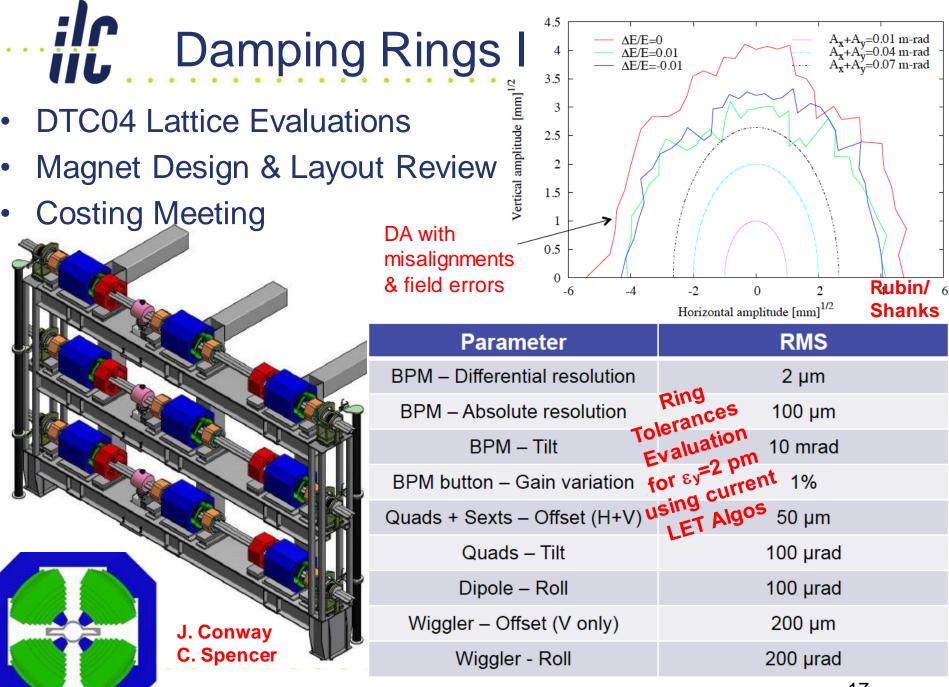
CM-2 Cold Test Coming Soon going to NML, today!

- Assembly is largely complete
 - Leak checking, some wiring remains
- Expect CM-2 to arrive at NML mid-April
 - After CM-1 is removed and transported
 - Then bring CM-2 to NML
 - Expect > 30 MV/m on average (7 cavities recorded > 35 MV/m in vertical test)

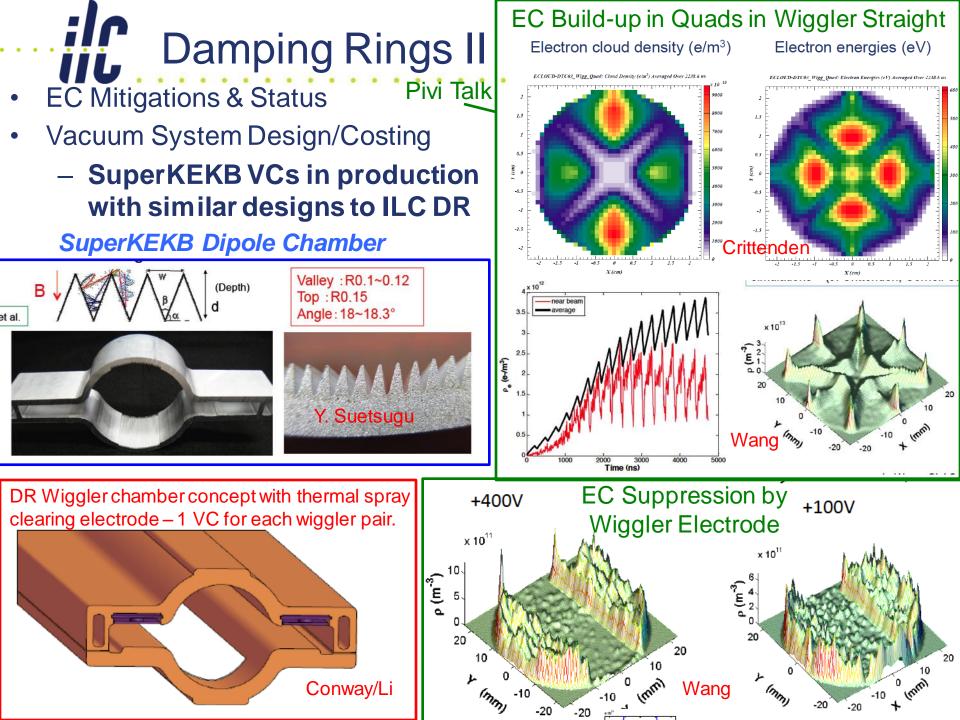


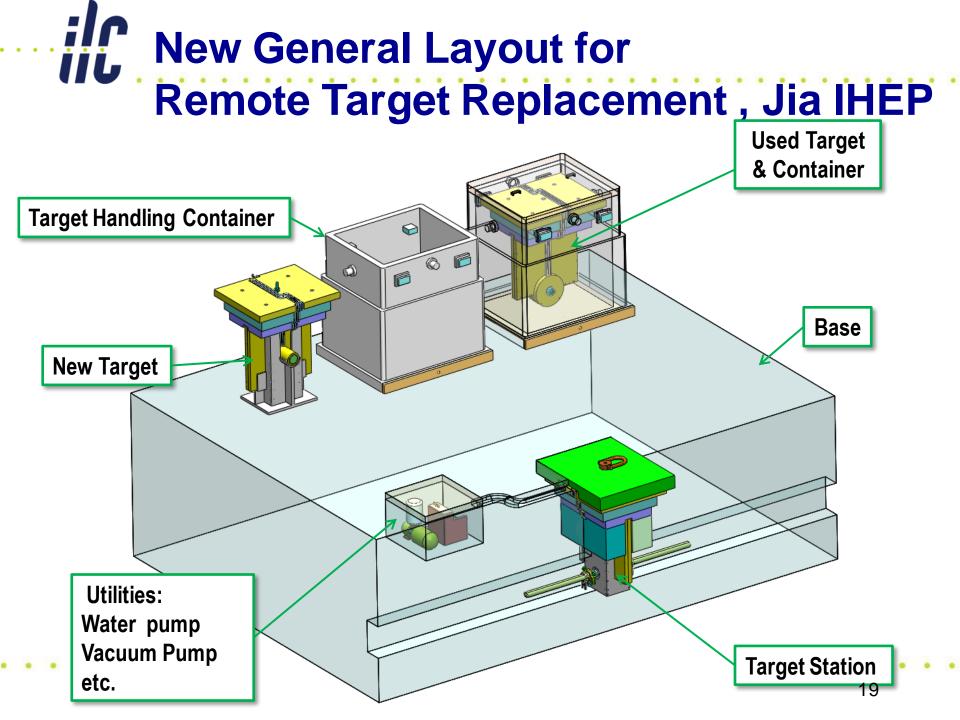
Accelerator System

• BDS

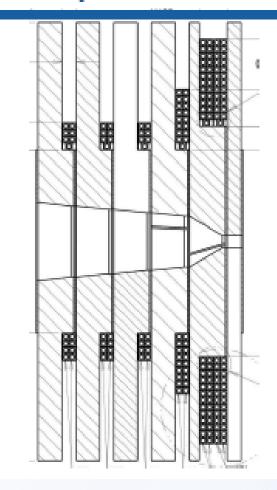

- ATF recovery after "earth quake" in 2011

- Damping Ring
- e+ source
- RTML and ML beam dynamics




largest M_{meas} = 0.522 ± 0.042 $\leftrightarrow \sigma_{y,meas} \sim 165 \text{ nm}$

	2/17: 30 deg	M	ΔM	σ_y^*	$\Delta \sigma_y^*$	avg E_{sig} / ICT [GeV / 10 ⁹ e]	
	18:07	0.426	0.039	194.98	6.21	2.359	
	18:09	0.390	0.043	206.63	6.48	2.403	
	18:12	0.433	0.036	192.55	5.73	2.269	
	18:14	0.439	0.034	190.82	5.49	2.290	
	18:16	0.437	0.038	191.29	6.16	2.303	S/N : 4 – 5
	18:18	0.460	0.040	183.86	6.78	2.267 •	Signal jitter ~ 22%
	18:20	0.444	0.035	189.20	5.77	2.450 •	BG fluc. ~ 15%
	18:22	0.39	0.042	206.67	6.902	2.292 st	able beam current
•	18:24	0.453	0.037	186.17	6.203	2.356	
	18:26	0.389	0.042	207.029	6.205	2.360	



KILC 2012: Daegu, South Korea

Water cooling and room temperature greatly simplifies the design

- Device sits in the vacuum
- All power and cooling connections move to the rim
 - Coils are kapton wound, hollow copper, water cooled
 - Plates are OFHC copper with water cooling pipes soldered in
 - Only metal in the high radiation areas
- Plates and coils stack and bolt together

New OMD design,, Jeff Gronberg, LLNL

IC RTML & ML Beam Dynamics

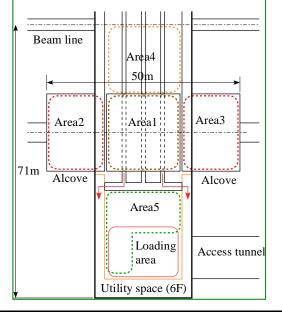
- RTML design (A.Vivoli, N.Solyak, V.Kapin, Fermilab)
- Main Linac lattice design (V.Kapin, N.Solyak, Fermilab)
 - (Almost) Complete.
 - No Problem
- Comments to Main Linac Design from Beam Dynamics (K.Kubo KEK)
 - Confirm present lattice choice is the best.
 - Remind requirements from beam dynamics.
 - No Objection
- Status of RTML writing for TDR (prepared by N.Solyak but could not be presented)
 - No Problem

ILC-TDR: Baseline Parameters

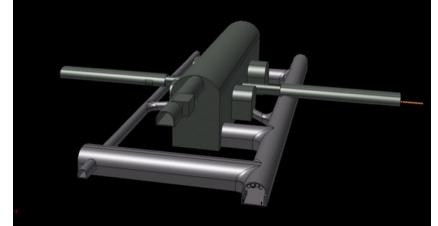
In TDR Part-2, Chapter 2, drafted by N. Walker

Centre-of-mass energy	E_{CM}	GeV	200	230	250	350	500
Luminosity pulse repetition rate		Hz	5	5	5	5	5
Positron production mode			10 Hz	10 Hz	10 Hz	nom.	nom.
Bunch population	N	$\times 10^{10}$	2	2	2	2	2
Number of bunches	n_b		1312	1312	1312	1312	1312
Linac bunch interval	Δt_b	ns	554	554	554	554	554
RMS bunch length	σ_z	μm	300	300	300	300	300
Normalized horizontal emittance at IP	$\gamma \epsilon_x$	μm	10	10	10	10	10
Normalized vertical emittance at IP	$\gamma \epsilon_y$	nm	35	35	35	35	35
Horizontal beta function at IP		mm	16	14	13	16	11
Horizontal beta function at IP	$\beta_{\frac{x}{2}}^{*}$ $\beta_{\frac{y}{2}}^{*}$ $\sigma_{\frac{x}{2}}^{*}$	mm	0.34	0.38	0.41	0.34	0.48
RMS horizontal beam size at IP	σ_{π}^{*}	nm	904	789	729	684	474
RMS horizontal beam size at IP	σ_u^*	nm	7.8	7.7	7.7	5.9	5.9
Vertical disruption parameter	D_y		24.3	24.5	24.5	24.3	24.6
Fractional RMS energy loss to beamstrahlung	δ_{BS}	%	0.65	0.83	0.97	1.9	4.5
Luminosity	L^{DD}	$ imes 10^{34} { m cm}^{-2} { m s}^{-1}$	0.56	0.67	0.75	1.0	1.8
Fraction of L in top 1% E_{CM}	$L_{0.01}$	%	91	89	87	77	58
Electron polarisation	P_{-}	%	80	80	80	80	80
Positron polarisation	P_+	%	30	30	30	30	30
Electron relative energy spread at IP	$\Delta p/p$	%	0.20	0.19	0.19	0.16	0.13
Positron relative energy spread at IP	$\Delta p/p$	%	0.19	0.17	0.15	0.10	0.07

KILC 2012: Daegu, South Korea


Progress in CFS

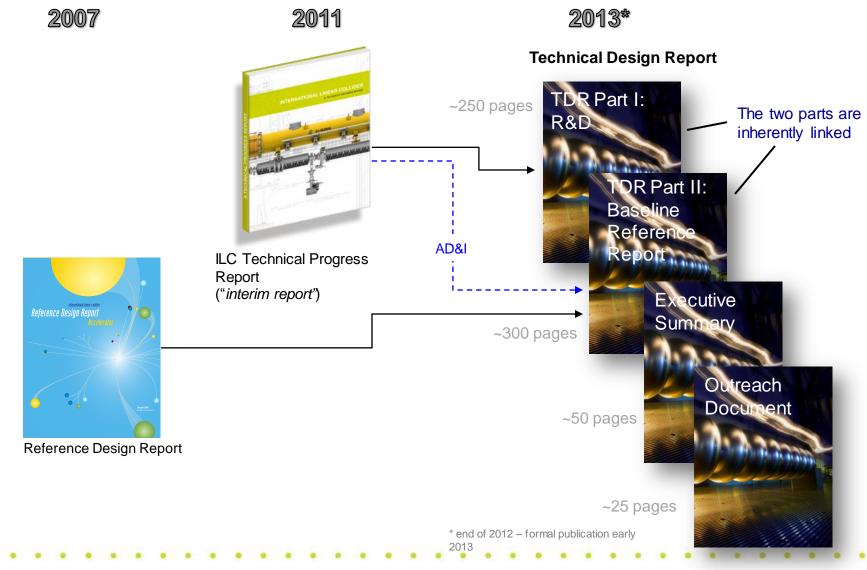
- Design and Costing for TDR nearly finished
 - Asia and Americas


ilc

- (Europe design / cost due in late May)
- Completely new, more mature design than RDR
- Excellent Cost performance / Saving
- Adaptation to Japanese candidate sites started
- Draft TDR content reviewed

Detector Hall CFS Review

iii



- Review Questions:
 - Criteria understood?
 - Design satisfy the criteria?
 - What are the cost-drivers?
 - What are the outstanding issues?

Presentations:

- Alignment requirements (special tunnels)
- Underground Assembly schemes
- Cryogenic systems
- Cost roll-up
- Report to be written.

Technical Design Report

GDE Summary

KILC12, 12-04-26

ic

Publication and Review

First-draft sections	* 23 April *
Complete edited draft	22 October (ILCWS 12)
Final draft (for PAC)	15 November
PAC review	15-16 December

Formal publication at Lepton Photon Conf. (SF, June 2013) Expect international reviews: Both technical and cost (Q1-22 2013) ilr

Communication with Companie

Further study in contract in 2011-2012

		Date	Company	Place	Technical sbject
	1	2/8, 2011	Hitachi	Tokyo (JP)	Cavity/Cryomodule
	2	2/8	Toshiba	Yokohana (JP)	Cavity/Cryomodule, SCM
	3	2/9	МНІ	Kobe (JP)	Cavity / Cryomodule
	4	2/9	Tokyo Denkai	Tokyo (JP)	Material (Nb)
	5	2/18	OTIC	NingXia (CN)	Material (Nb, NbTi, Ti)
	6	(3/3), 9/14	Zanon	Via Vicenza (IT)	Cavity/Cryomodule
	7	3/4,	RI	Koeln (DE)	Cavity
	8	(3/14), 4/8	AES	Medford, NY (US)	Cavity
	9	(3/15), 4/7	Niowave	Lansing, MI (US)	Cavity/Cryomodule
	10	4/6	PAVAC	Vancouver (CA)	Cavity
	11	4/25	ATI Wah-Chang	Albany, OR (US)	Material (Nb, Nb-Ti, Ti)
	12	4/27	Plansee	Ruette (AS)	Material (Nb, Nb-Ti, Ti)
	13	5/24	SDMS	Sr. Romans (FR)	Cavity
	14	7/6	Heraeus	Hanau (DE)	Material (Nb, Nb-Ti, Ti)
	15	10/18	Babcock-Noell	Wurzburg (DE)	CM assembly study
k	1L 16 2,	1 2-0412 6	SST G	de sanh (RF)	Electron Beam Welder

ic Mass-Production Studies

in contracts

	Company	Mass production model	Contract funded/hosted by
Cavity	RI	100% (50%)	DESY
	AES	20 %	DOE/Fermilab
	MHI	20, 50, 100%	KEK
Quadrupole	Toshiba	100 %	KEK
CM and assembly	Hitachi	20, 50, 100%	KEK
	AES	25%	DOE/Fermilab
CM assembly	BN	100, 33 %	CERN

In parallel, EXFEL experience kindly informed by DESY, INDFN, CES/Saclay

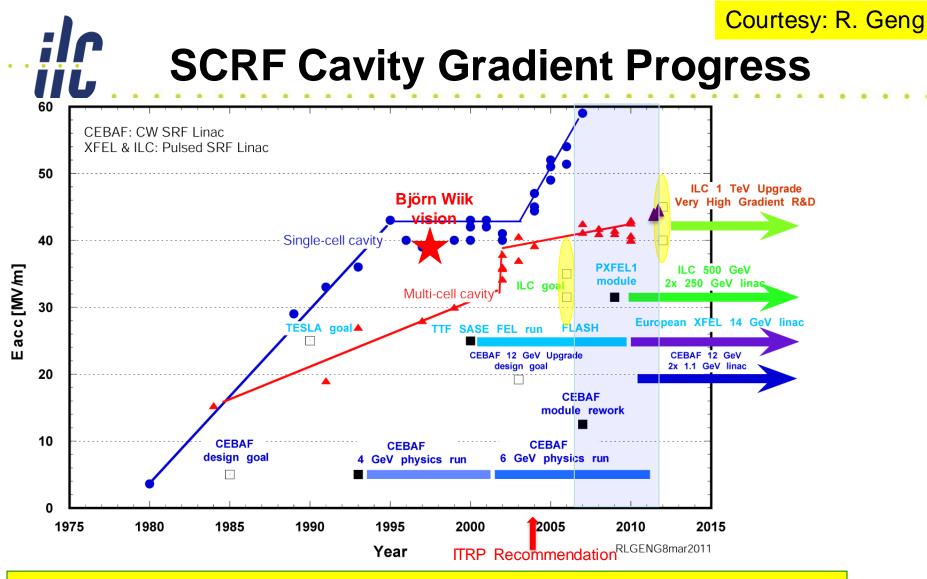
KILC12, 12-04-26

Technical Development beyond TDR

• SCRF

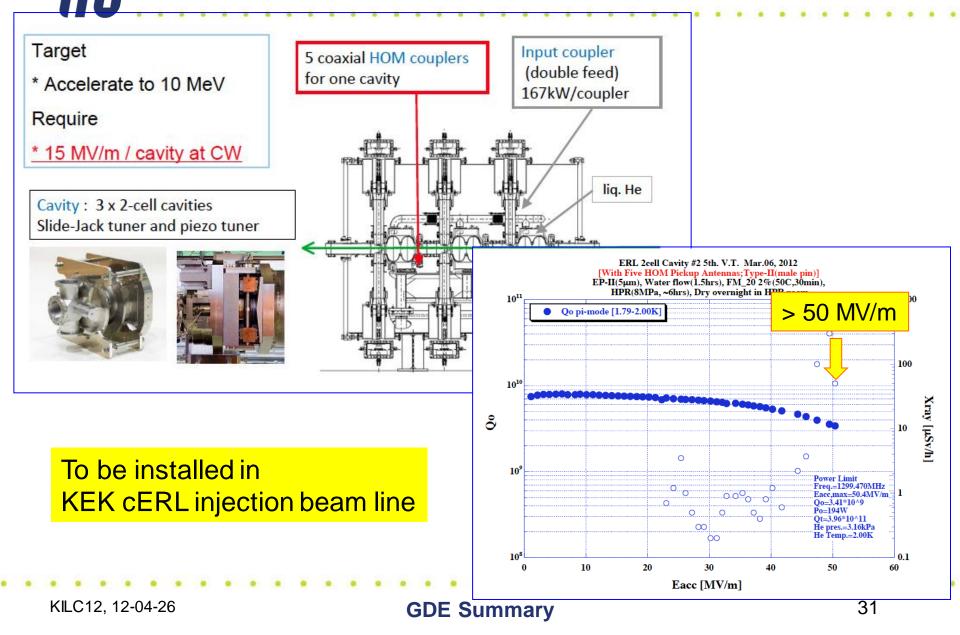
İİL

- Higher Gradient in cavity toward 1 TeV


- Industrialization and cost-saving technology

• CFS

- Geological survey and/or study
- Civil engineering study


Accelerator Systems

- e+ source Target R&D, and undulator R&D
- Preparing to be ready for 250 GeV ~1 TeV LC

- Continued progress in SRF gradient : breakthrough of 45 MV/m in 1-cell, ~60 MV/m record; 45 MV/m in 9-cell
- GDE began in 2005: produce a design for ILC and coordinate worldwide R&D efforts
- New SRF Test Facilities in operation: STF at KEK and NML at Fermilab
- Upgrade of CEBAF to 12 GeV underway at Jefferson Lab (80 cavities)
- FLASH operation and construction of European XFEL underway (640 cavities)

A 2-cell cavity w/ end-G reached > 50 MV/m

Cavity Fabrication at KEK is coming

ilc

KILC12, 12-04-26

Summary

- ILC accelerator technology
 - SCRF cavity gradient progressing toward 35 MV/m,
 - Beam test facility functioning to demonstrate the ILC accelerator requirements,

Technical Design Report (TDR)

- Contents being settled w/ flat and mountainous cases,
- Draft being submitted by each author,
- Final draft due LCWS-12, Oct., 2012
- Further work beyond TDR
 - Advanced R&D for 1 TeV upgrade capability,
 - Further study to be readh for various energy operation

• Many thanks for the KILC12 organizer

ic.....

KILC12, 12-04-26

GDE Summary

34

Ch	Sect Heading	Pages	Primary
	PART I: ILC R&D in the Technical Design Phase	280	
1	Introduction	10	<u>Walker</u>
2	Evolution of the ILC design in the Technical Design Pha	10	<u>Walker</u>
3	Superconducting RF technology	95	<u>Yamomoto</u>
4	Beam Test Facilities	70	[Editor]
5	Accelerator Systems R&D	70	[Editor]
6	Conventional Facilities and Siting Studies	10	<u>Kuckler</u>
7	Post-TDR R&D	10	<u>Ross</u>
8	Summary	5	<u>Walker</u>

Logistics

There are too many chapters to spend 3hrs on each, so we will need to prioritize

	Part II: The ILC Baseline Reference	338	
1	Introduction and overview	5	Paterson
2	General parameters and layout	15	[Editor]
3	SCRF Main Linacs	50	Yamomoto
4	Electron source	10	Sheppard
5	Positron source	20	Gai
6	Damping Rings	25	Guiducci
7	RTML	20	Solyak
8	Beam Delivery System and MDI	25	Seryi
9	Global Technical Systems	26	
10	Commissioning, Operations, and Availability	15	Ross
11	Conventional Facilities and Siting	42	Kuchler
12	Upgrade options	20	[Editor]
13	Scope of post-TDR engineeting (tech. risk assessment)	20	Ross
14	Project Implementation Planning	20	<u>Harrison</u>
15	Cost and Schedule	20	<u>Dugan</u>
16	Summary	5	Walker

Which authors are going to the meeting?

ilr

Communication with Industry

SC Cavity Manufacturers

	Date	Company	Place	Technical sbject
1	2/8, 2011	Hitachi	Tokyo (JP)	Cavity/Cryomodule
2	2/8	Toshiba	Yokohana (JP)	Cavity/Cryomodule, SCM
3	2/9	MHI	Kobe (JP)	Cavity / Cryomodule
4	2/9	Tokyo Denkai	Tokyo (JP)	Material (Nb)
5	2/18	OTIC	NingXia (CN)	Material (Nb, NbTi, Ti)
6	(3/3), 9/14	Zanon	Via Vicenza (IT)	Cavity/Cryomodule
7	3/4,	RI	Koeln (DE)	Cavity
8	(3/14), 4/8	AES	Medford, NY (US)	Cavity
9	(3/15), 4/7	Niowave	Lansing, MI (US)	Cavity/Cryomodule
10	4/6	PAVAC	Vancouver (CA)	Cavity
11	4/25	ATI Wah-Chang	Albany, OR (US)	Material (Nb, Nb-Ti, Ti)
12	4/27	Plansee	Ruette (AS)	Material (Nb, Nb-Ti, Ti)
13	5/24	SDMS	Sr. Romans (FR)	Cavity
14	7/6	Heraeus	Hanau (DE)	Material (Nb, Nb-Ti, Ti)
15	10/18	Babcock-Noell	Wurzburg (DE)	CM assembly study
16	11/11	SST	Maisach (DE)	Electron Beam Welder

Progress in CFS

- By Marc and Vic
 - Design progress in FLAT and Mountaineous category
- To be provided by Marc and Toshiaki
 - Detector hall review

ilr

İİĻ

TDR Deadlines

İİĹ