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Motivation

"What is the mechanism of ElectroWeak Symmetry Breaking (EWSB)"?
One of the most important questions in particle physics yet to be
answered at Large Hadron Collider (LHC)

On a broad scale theorists have two different ideas for this question

"Weak scenario", with the assumption that the Higgs sector consists of a
light Higgs in the range 130 ≤ mH ≤ 180 GeV

"Strong scenario", characterized in general by the absence of Higgs
field or the mass is of the order of the new interaction, i.e. around 1 TeV
or when the Higgs is light ∼ 125 GeV, consistent with the regions so far
not excluded by LHC searches

One all-around consequence of the "Strong scenario" is the longitudinal
W ′s and Z ′s start interacting strongly with themselves at high energies

This talk mainly concentrates on the theory of WW scattering at high
energies, and the feasibility of carrying out such a study in International
Linear Collider (ILC)
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Longitudinal Gauge Boson Scattering

The longitudinal W (WL) hold the key to EWSB, as it corresponds to the
Goldstone degree of freedom

The polarization vector of WL,ZL grows as the energy of the particle, so
the amplitude diverges in the high energy limit

In gauge theory the cancellation between the graphs, cures the bad high
energy behaviour of the amplitude

At high energies s≫ m2
W , vector boson scattering amplitudes are

calculated using Equivalence Theorem

Equivalence Theorem

At high energies there is a correspondence between the longitudinal
component of gauge bosons and the corresponding Goldstone bosons

M(WLWL → WLWL) = M(ww → ww)
M(ZLZL → ZLZL) = M(zz → zz)
M(WLZL → WLZL) = M(wz → wz)
M(WLWL → ZLZL) = M(ww → zz)
where w and z are the Goldstone bosons
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Mapping of Higgs sector with Pions

Custodial Symmetry

Experimentally ρ = 1 holds upto 1 percent, indicating the actual larger
symmetry of Higgs sector

ρ =
M2

W
M2

Z cos θ2
W

Explained naturally in the SM, where the Higgs field is a doublet

In the strongly interacting scenario, ρ = 1 is not natural but is protected
from large quantum corrections by custodial symmetry, with the
breaking pattern: SU(2)L × SU(2)R → SU(2)V

Using Equivalence Theorem, the longitudinal gauge bosons have a
close resemblence to pions, both being Goldstone Bosons of same
symmetry breaking pattern SU(2)L × SU(2)R → SU(2)

Goldstone boson interactions are defined by Low Energy Theorem
(LET), analogous to the theorem for ππ scattering in the Chiral
Lagrangian, for s ≪ Λ2

SB

Monalisa Patra IISc

Strongly Interacting Sector and Polarized Beams at ILC



Introduction Dynamics of Strong Scattering Strong Final State Interaction in WW Channel Numerical Analysis Discussions and Conclusions

Mapping of Higgs sector with Pions

Electroweak Chiral Langragian

At lowest order the Lagrangian is given by:

L = 1
2∂µwa∂µwa + 1

6v2 [(w
a∂µwa)2 − wawa(∂µwa)2] + ......

Scattering amplitudes for W±, Z boson are calculated at s ≫ mW , mZ ,
using Equivalence Theorem, from the scattering of w±, w3

The scattering amplitudes are given as (D. Dominici, Riv. Nuovo Cim. 20N11 (1997) 1) :

M(W+
L W−

L → ZLZL) = A(s, t , u)
M(W+

L W−
L → W+

L W−
L ) = A(s, t , u) + A(t , s, u)

M(ZLZL → ZLZL) = A(s, t , u) + A(t , s, u) + A(u, t , s)

with A(s, t , u) = s/v2

The Lagrangian is valid at low energies, with the scattering amplitudes
violating unitarity at higher energies
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Unitarity and Resonances

Partial Wave Unitarity

Expanding the scattering amplitude in a series of partial wave amplitude

MI = 32π
∑

l(2l + 1)aIlPl(cos θ)

with MI as the isospin amplitude

Projecting out the partial waves, the energy where partial wave unitarity
is violated is found by requiring |aIl| ≤ 1 or |Re aIl| ≤ 1

2 ,

Bound on mH is obtained, by considering the l = 0 partial wave unitarity
for large s for WW scattering in the absence of Higgs

Re a00 ∼ Re GF s
16π

√
2
< 1/2

s < 4π
√

2
GF

≈ (1.2TeV )2 i.e. mH < 1.2 TeV
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Unitarity and Resonances

Saving Unitarity

Lowest order amplitudes violate unitarity, with the need for including
higher order corrections

The amplitudes calculable to all order is usually hard to compute, with
the need to obtain a unitary amplitude from the approximate amplitude
which violates unitarity

From low energy hadron physics, several extrapolation schemes are
there incorporating the tree level and one loop results from χPT along
with satisfying unitarity

They are mainly the K- matrix, Padé and N/D methods, extensively
discussed in the literature (K. -i. Hikasa, In *Saariselkae 1991, Proceedings, Physics and experiments with

linear colliders)

The method of unitarization along with the parameters of the Lagrangian
decides whether a resonance exists in a particular channel or not
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Unitarity and Resonances

Resonances

It is impossible to predict the resonances, as the underlying dynamics of
strong interactions is not known
The zeroth order K- matrix amplitude, presents a model with non
resonant l = I = 1 partial wave, whereas Padé gives a resonance
In terms of partial wave amplitudes :

aK (s) =
aLET (s)

1 − iaLET (s)

aPade(s) =
aLET (s)

1 − a(1)(s)/aLET (s)

The other way of including the resonances i.e vector or scalar is
assuming the existence of resonance in a particular channel, and writing
down a Lagrangian including resonance as the elementary field
The BESS (Breaking Electroweak Symmetry Strongly) models consider
the ρ like resonance as a gauge boson of a hidden SU(2), introducing
strong interactions in the weak gauge boson sector
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Analysis in Colliders

LHC and ILC

Gauge boson scatterings in processes like qq → qqVV , where
V = W , Z were computed within, the equivalent gauge boson
approximation (EGBA) (Accomando et al. Phys. Rev. D 74 (2006) 073010)

For the leptonic colliders, e+e− → ll ′ W+W−, where l , l ′ = e, µ, νe, νµ
have been investigated for strong VV scattering (T. Abe et al., arXiv:1006.3396 [hep-ex])

The process is sensitive to scalar and tensor resonances, as well as the
vector resonances arising in gauge boson scattering
The process e+e− → W+W−, which we consider has the advantage
that only vector resonances are involved, and also its cross section (at
ILC energies) is about three orders of magnitude larger than
e+e− → ll ′ W+W−

(T. L. Barklow, [arXiv:hep-ph/0112286])

Within the framework of the BESS model, the contribution of the
additional ρ in the s-channel is done for e+e− → W+W−, including W ’s
decay spectrum (Casalbuoni et al. [hep-ph/9912377])

These effects are almost negligible unless one is very close to the new
vector resonance, owing to their highly constrained fermionic couplings
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Partial Wave Analyses

Form Factors

The effect of single vector resonance, is parametrized by introducing
suitable form factors in the l = 1 partial wave amplitude of
e+e− → W+W−

The complex form factor scaled in analogy to the pion form factor
derived from Gounaris Sakurai (GS) or Breit Wigner (BW)
representation, approximates the effect of the resonance (Iddir et al. Phys. Rev. D

41 (1990) 22, Werthenbach and Sehgal, Phys. Lett. B 402 (1997) 189)

An improved treatment of vector boson resonance is to introduce a
suitable Omnès function, to implement the phase shift depending on
dynamics to the P partial wave in e+e− → W+W−

(Bernreuther and Schroder, Z. Phys.

C 62 (1994) 615)

The Omnes formalism is the mathematical exercise of finding functions
which are analytic except for 4m2

W ≤ s ≤ ∞ and considering that the
reaction is elastic at the energies considered
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Partial Wave Analyses

Omnès Function

The phase of the form factor δ obtained either from a K- matrix, or from
GS or BW parametrization for a given Mρ and Γρ, gives the Omnès
Function

Ω(s) = exp

[

s
π

∫ ∞

4m2
W

δ(s′)ds′

s′(s′ − s − iǫ)

]

The form factor for a single channel elastic scattering is related to Ω(s)
by :

F (s) = (1 +
s
a
+

s2

b2
+ · · · )Ω(s)

provided lims→∞ δ(s) = finite, lims→∞
|f (s)|

s → 0

The constants a, b, · · · etc. are fixed from additional inputs from the
underlying theory, or experiments, which we assume to be large

GS and BW parametrizations are treated as low energy representation
of the form factor to generate δ
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Partial Wave Analyses

Feynmann Diagrams

e−

e+

ν
W−

W+

e−

e+

γ, Z

W−

W+

Figure: Feynman diagrams contributing to the process e+e− → W+W− in the SM

The strong interaction through ρ like resonance, affects only the l = 1
partial wave

The amplitudes involving WL are modified, through an Omnès function,
representing the strong final state interaction
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Partial Wave Analyses

The γ and Z exchange s-channel contributions are pure P waves, so
the amplitude corresponding to s-channel of the WLWL production is
modified as:

Mγ+Z
LL (s, θ) → Ω(s)Mγ+Z

LL (s, θ).

The ν exchange t-channel has l ≥ 1 components, so l =1 amplitude is
modified, leaving the others unaffected

Mν,l
LL (s, θ) → Ω(s)Mν,l=1

LL (s, θ) + Mν,l>1
LL (s, θ)

The helicity amplitude for WLWL is defined in terms of partial waves as :

Mν,l=1
LL (s, θ) =

3
4π

d1∗
m,0(θ)a

1
L(s), m = ±1

where

d1
m,0(θ) = − 1√

2
sin θ

is the relevant rotation function.
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Partial Wave Analyses

The l = 1 partial wave is isolated by the projection,

a1
L(s) = 2π

∫ +1

−1
d(cos θ)d1

m,0(θ)M
ν,1
LL (s, θ).

The rest of the amplitude with l > 1 is obtained by,

Mν,l>1
LL (s, θ) = Mν,l

LL (s, θ)− Mν,l=1
LL (s, θ)

The effect of the strong interaction in the t- channel is rewritten as:

Mν,l
LL (s, θ) → Mν,l

LL (s, θ) + (Ω(s)− 1)Mν,l=1
LL (s, θ)
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Beam Polarization

Beam polarization at ILC will significantly benefit the physics program, in
searches for new physics with small deviations from SM cross sections
A beam polarization of ≥ 80% for electrons and ≥ 30% for positrons at
the interaction point is proposed, with a possible upgrading to about
60% for the positron beam

Longitudinal Polarization

The dependence of the cross section to the polarization is parametrized
through Pl = (NR − NL)/(NR + NL), where NL,R denote the number of
left-polarized and right-polarized electrons (or positrons), respectively

Transverse Polarization
At the ILC, with the help of the proposed spin rotator scheme the LP can
be reoriented to achieve TP of the same degree

dσ
dΩ

=
β

64π2s

{

1
4

(

(1 + Pl)(1 − Pl̄) |M+−|2 + (1 − Pl)(1 + Pl̄) |M−+|2
)

−1
2

PtPt̄ (cos 2φ ReM∗
+−M−+ − sin 2φ Im M∗

+−M−+)

}
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Beam Polarization

W helicities production cross section

σ (pb)

Pe− = 0 Pe− = −0.8 Pe− = 0.8
λW− λW+ Pe+ = 0 Pe+ = +0.6 Pe+ = −0.6

-1 -1 0.0003 0.0010 0.0
-1 0 0.0191 0.0541 0.0024
-1 1 3.4943 10.063 0.2795
0 -1 0.0032 0.0084 0.0011
0 0 0.0468 0.1124 0.0263
0 1 0.0191 0.0541 0.0024
1 -1 0.0921 0.2653 0.0074
1 0 0.0032 0.0085 0.0011
1 1 0.0003 0.0010 0.0

Table: SM cross sections in pb for
√

s = 800 GeV with different beam polarizations and for

different W+W− helicities
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Observables

Choice of Parameters

For our analyses we chose the mass of the resonance to vary from the
unitarity limit 1.2 TeV to 2 TeV
For the choice of width, we consider the relation:

Γρ =
m3
ρ

96πv2

from the constraints employed by low energy chiral QCD on Γρ

60 80 100 120
Γρ (GeV)

0.151

0.152

0.153

0.154

0.155

σ
L

L
 (

p
b

)

Figure: Total unpolarized cross section for WL as a function of width for Mρ = 1200 GeV, at
√

s = 800 GeV. The square denotes the value of cross section for Γρ obtained from above eq.
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Observables

Total Cross Section

500 1000 1500 2000
√ s (GeV)
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SM

GS form factor

GS Omn`es function

Figure: Total unpolarized c.s for WL as a

function of
√

s for SM, along with GS form factor

and the respective Omnès function for Mρ = 1200

GeV, Γρ = 94 GeV
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GS,  Mρ = 1600 GeV

Figure: Cross Section for WLWL, with Pe− =

0.8, Pe+ = -0.6, as a function of
√

s in SM, NR

along with GS-Omnès parametrization. An

angular cut of | cos θ| < 0.5 is applied
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Observables

Angular distribution of WLWL and WLWT
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Figure: Polar angle distribution of WL in WLWL

production in SM, NR, GS-Omnès

parametrization and the different Z ′ models, with

Pe− = 0.8 and Pe+ = -0.6 at
√

s = 800 GeV

For the Z ′ models, we consider the mixing
angle θM = 0.003 and ∆M = 0.12 GeV,
whereas for LHM, f = 1 TeV and cos θH =
0.45 is considered satisfying the
electroweak constraints.

With both W ′s in the final state being
tranversely polarized, no effect of new
physics from Z ′ or strongly interacting
sector is observed

WT WT are mostly produced through the
ν-exchanged t-channel, whereas the Z ′

affects the s-channel only

With one of the W transversely polarized

and the other longitudinally polarized, Z ′

models sensitivity can be observed with no

influence from SFI
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Observables

Forward Backward Asymmetry

The fraction of W ′s emitted in the backward hemisphere is considered:

fback =

∫ 0
−1 (dσ/d cos θ) d cos θ

∫ 1
−1 (dσ/d cos θ) d cos θ

The above observable is related to FB asymmetry by AFB = 2fback − 1

300 600 900
√ s (GeV)

0

0.1

0.2

0.3

0.4

f ba
ck

SM
NR
GS, Mρ = 1600 GeV
LHM
LRSM, ALRSM
E

6
 (χ)

Figure: Fraction of unpolarized W ′s emitted in

the backward hemisphere as a function of
√

s, for

the different models considered, with Pe− = 0.8

and Pe+ = -0.6

At
√

s = 800 GeV, in SM 6% of the events
are in the backward region, in the presence
of strong interaction this is substantially
increased to a 9%

With the cross section at 0.3 pb, for a
moderate integrated luminosity of 100
fb−1, and considering a BR (∼ 4/27 for
semi-leptonic channel) and reconstruction
efficiency (∼ 65%) 6% of the events
amount to few hundred events

Certainly, a measurement of increase by

9% or 13% is conceivable in this case
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Observables

Azimuthal Distribution of W ’s

The deviation from SM in azimuthal
distribution for different scenarios with
unpolarized W ′s in the final state

∆ dσ
dφ = dσ

dφ (new)/ dσ
dφ (SM) − 1

-3 -2 -1 0 1 2 3
φ

-1

0

1

2

3

4

5

∆ 
R

LL

LHM

GS, Mρ = 1600 GeV

ALRSM

E
6
 (χ)

LRSM
NR

Figure: φ distribution of polarized WLWL

showing the deviation from SM as a function of φ

at
√

s = 800 GeV, in the different scenarios

considered. Purely transversely polarized beams

with PT = 0.8 and PT̄ = 0.6 are considered

The TP case has an interesting feature of
receiving contribution from the imaginary
part of the amplitude

The size of the contribution from

Im (M∗
+−M−+) can be estimated by

considering the following asymmetry

Aimg(θ) =
∫

π

−π
dσ
dΩ sin 2φdφ

50 100 150
θ (degrees)

-0.0001

-8e-05

-6e-05

-4e-05

-2e-05

0

2e-05

A
im

g  (
θ)

NR
GS, Mρ = 1200 GeV
GS, Mρ = 1600 GeV

Figure: Asymmetry showing the contribution

from imaginary part of NR, GS for different Mρ
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Observables

Azimuthal distribution of decay leptons

The observables considered so far are only sensitive to the modulus of
the Omnès function

Sensitivity to the effect of phase shift, was addressed by the inclusion of
TP, but too small to be seen at design ILC energies

Since WL are affected by the strong interactions, with no stong
interaction for WT , the interference pattern between the two amplitudes
will be sensitive to the phase

The spins of the weak bosons are analysed by their weak decays,where
the longitudinal-transverse spin-spin correlations is obtained by
correlating the azimuthal angles of W decay product
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Observables
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Figure: Expected angular distribution, with and without SFI, with initial beam polarization of Pe−
=− 0.8 and Pe+ = 0.6
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Observables

Energy distribution of decay leptons

0 0.2 0.4 0.6 0.8 1
X

l
-

0

0.005

0.01

0.015

0.02
dσ

/d
X

l-   
 (

pb
)

SM
NR
GS, Mρ = 1600 GeV
LHM
LRSM
ALSM
E

6
 (χ)

Figure: Laboratory energy distribution of the secondary lepton from W−
L , while W+

unpol is allowed

to decay into anything. Longitudinally polarized beams with Pe− = 0.8 and Pe+ = −0.6 at
√

s =

800 GeV is considered. Xl± = 2
β
√

s

(

El± −
√

s
4 (1 − β)

)
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Discussions and Conclusions

We have focussed on the fingerprinting of a strongly interacting sector at
the ILC, which may lead to a formation of vector resonance in
e+e− → W+W− with polarized beams

The method we have used is the inclusion of phase due to the strongly
interacting sector which modifies the l=1 partial wave, with the phase
modelled in terms of GS or BW parametrizations due to the possibility of
a resonance, or in terms of a non-resonant background

We have analyzed the process in great detail for the case of both initial
as well as final state polarizations and have studied various observables
like the total cross section, angular distribution of WL, WT , the FB as
well as the LR asymmetry

A detailed comparison is carried out with the popular models where new
physics can arise due to the presence of an additional heavy gauge
boson Z ′. The behavioral pattern is almost the same with WLWT

channel acting as a model discriminator for the Z ′ models from the
strongly interacting sector
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Discussions and Conclusions

The case of decays is also considered where the correlation
proportional to (φ− − φ+) is obtained using analytic methods

With a discovery of resonance at LHC, ILC will be able to disentangle
some of the contesting models against strongly interacting sector,
whereas in the absence of any information from LHC, it will be a difficult
job requiring very high luminosity and large c.m. energy.

Our work also shows that a strong polarization program at the ILC is
very useful in shedding light on the dynamics of EWSB
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Thank You
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