Report on status on the DBD bench-mark "Polarisation measurement using WW events"

Aura Rosca¹, presented by Mikael Berggren¹

¹DESY, Hamburg

KILC12, Daegu, S. Korea , April 26 ,2012

A. Rosca, M. Berggren (DESY)

WW bench-mark

WW and Polarisation

(Ref: Ivan Marchesini's PhD thesis.)

WW production : a high cross-section, polarisation dependent process

Ideally suited to make polarisation measurements.

A B b 4 B b

Polarisation from the Blondel-scheme

Polarisation measurement from data with the (modified) Blondel scheme:

$$\sigma = \sigma_{u} \left[1 - P_{e^{+}} P_{e^{-}} + A_{LR} (P_{e^{+}} - P_{e^{-}}) \right], \tag{1}$$

hence

$$P_{e^{\pm}} = \sqrt{\frac{(\sigma_{+-} + \sigma_{-+} - \sigma_{++} - \sigma_{--})(\mp \sigma_{-+} \pm \sigma_{+-} - \sigma_{++} + \sigma_{--})}{(\sigma_{-+} + \sigma_{+-} + \sigma_{++} + \sigma_{--})(\mp \sigma_{-+} \pm \sigma_{+-} + \sigma_{++} - \sigma_{--})}}$$

 $\sigma_{\pm\pm} = \text{cross-section for } e^+e^- \rightarrow WW$ for the particular beam-polarisation. ++ and - - data needed !

However: 100:s of fb^{-1} needed to get to 0.2 %.

< ロ > < 同 > < 回 > < 回 >

Polarisation from Θ_W

Look at polarisation dependence in bins of Θ_W :

Fit number of data events in Θ_W -bins for \mathcal{P}_{e^+} for \mathcal{P}_{e^-} obtained from templates of $d\sigma(\Theta_W, \mathcal{P}_{e^+}, \mathcal{P}_{e^-})$

A. Rosca, M. Berggren (DESY)

WW bench-mark

Θ_W and Blondel

Result of fit and Blondel-scheme:

Θ_W and Blondel

Result of fit and Blondel-scheme:

ъ

TGC:s in WW

There is a catch, however:

Triple Gauge Couplings

TGC:s :

- 14 complex parameters, 8 CP conserving.
- In the SM: only 4 real parameters non-zero, all equal to unity
- Deviations from SM loop-corrections and beyond SM physics

Deviations from the SM still allowed (by LEP), modifies angular diff. cross-sections \rightarrow % level corrections to polarisation measurement \rightarrow fit simultaneously. Complicated, however: almost no change in error on \mathcal{P} (Ivan's thesis)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Status

- The signal and relevant backgrounds are generated.
- NB. For this bench-mark, the signal (*WW*), has a higher cross-section than it's relevant backgrounds (all other 4-fermion channels) !
- The frame-work from Ivan has been taken over and adapted by Aura Rosca.
- She has done 'dry-runs' on generator-level information.

A B F A B F

What lumi is useful ?

- We are asked to simulate 1 ab⁻¹.
- For *WW* this means 20 Mevents = LOI mass-production.
- However, the polarisation measurement is probably systematics-limited before this.
- From Ivan's thesis: At 500 GeV, $|\mathcal{P}| = (80\%, 30\%)$, \mathcal{P}_{e^-} is limited by systematics from ϵ , luminosity, and polarimeters, but not beam-spectrum at $\approx 300 \text{ fb}^{-1}$ (both for Blondel and Θ_W).
- How will this scale to 1 TeV ? One one hand, there are less signal events and lower positron polarisation → higher statistical error/(year). On the other hand, the machine is less clean, and events are more forward → expect higher systematics..
- Note: LOI analysis was done on a 80 fb⁻¹ samples only and extrapolated to 500 fb⁻¹.
- Strictly speaking, the signal is only $WW \rightarrow q\bar{q}l\nu$, which is 22 % of the total (= 4.3 Mevent).

Conclusions

Conclusions

For the WW bench-mark,

- All is ready to go.
 - Signal and background generated.
 - Analysis chain is in place.
- Note that for *WW*, all polarisation combinations need to be simulated.
- Unclear exactly which and how many events need to be fully simulated.

< ロ > < 同 > < 回 > < 回 >

Conclusions

Conclusions

For the WW bench-mark,

- All is ready to go.
 - Signal and background generated.
 - Analysis chain is in place.
- Note that for *WW*, all polarisation combinations need to be simulated.
- Unclear exactly which and how many events need to be fully simulated.

A B F A B F