Higgs Self-coupling Status and Prospects

Taikan Suehara (ICEPP, U. Tokyo)

ZHH and ILC: our motivation

Lagrangian term

Gauge force

Yukawa force

ZHH is not included in benchmark, but...

SM force

QCD, electroweak

Higgs-fermion

example

- ZHH is the only probe for the last piece of SM: Higgs Force
- LHC seems almost impossible Higgs force Higgs self-coupling to investigate it in case of light Higgs (even at 3000 fb⁻¹)
 -> strong motivation of building 500 GeV ILC!

ZHH is very difficult, even in ILC...

- Extremely small cross section of 0.2fb (and half from nonself coupling diagram)
- Huge background, complicated final states, hard to separate

Have to gather effort for ZHH analysis!

Timeline for ZHH analysis

- 2001 Tesla TDR: 13% σ, 22% λ_{hhh} in 1000 fb⁻¹
 - Hard gluon treatment was wrong...
- 2008 ILD LoI: 95% σ in 500 fb^-1
- 2011 ILD (J. Tian): 32% σ , 57% λ_{hhh} in 2000 fb⁻¹
- Our tools development (2010 present)
 - Vertex-based jet clustering
 - expect to raise ttbar separation performance > 10%
 - Single track vertex finder
 - LCFIPlus optimization
- First analysis using those tools are ongoing <u>– started last week in fact...</u>

Previous result by Junping

Polarization: (e-,e+)=(-0.8,0.3)							
Energy (GeV)	Modes	signal backgrou	background	signif excess	icance measurement		
				(I)	(II)		
500	$ZHH ightarrow (lar{l})(bar{b})(bar{b})$	6.4	6.7	2.1σ	1.7σ		
500	$ZHH ightarrow (u ar{ u}) (b ar{b}) (b ar{b})$	5.2	7.0	1.7σ	1.4σ		
500	ZHH ightarrow (qar q) (bar b) (bar b)	8.5	11.7	2.2σ	1.9σ		
		16.6	129	1.4σ	1.3σ		

we are interested in:

- A. the combined significance of ZHH excess.
- B. the combined precision of measured ZHH cross section.

age 4

Tentative 4b analysis result

	bbhh	qqhh	tt	ZZZ-6b	ZZZ-4b	ZZh	ttqq	bbbb
No cut	27	111	800000	12.5	146	381	2169	40824
Precut	21	37	2298 (880)	9.4	43	40	153	13004
4b part	7.5	37	2212	3.9	40	33	140	10232
Final MVA1	1.4	13.8	141	0.3	4.8	9.6	23	45
Final MVA2	0.2	5.3	10.1	0.0	1.0	2.6	5.1	6.7
Final MVA3	0.1	3.1	1.7	0.0	0.4	1.2	2.4	2.0

Unfortunately not so good result yet...

- bbbb & ttqq cuts are not optimized
 many room for improvements
- Need better separators for ttbar

bbhh mode

10²

ycuts[4]

To ensure no overlap with 4b mode, apply the following selection

 Ibbhh>0.60 (ensure no overlap with 4b mode)

Event selection is performed using:

- lzhh>-0.4 && lzhh<0.05
- thrust < 0.9
- |cos θthrust |<0.95
- ycut[5]>0.00072 && ycut[5]<0.055
- chi2_4j > 15
- max(mz1_4j,mz2_4j)>100
- btag[3]>0.5 (in addition to the pre-selection)
- 90<mH1,2<140, 70<mZ<140

Problems in current analysis(1)

- Mokka B-baryon lifetime fix
 - B-baryons immediately decay in LoI sample
 - B-baryon fraction: ~10% of all b decay
 - Suffers much in 4b/6b counting

	bbhh	bbhhnew	qqhh	qqhhnew	tt	ZZZ-6b	ZZZ-4b	ZZh
Final MVA1	1.4	1.5	13.8	20.8	141	0.3	4.8	9.6
Final MVA2	0.2	0.5	5.3	8.8	10.1	0.0	1.0	2.6
Final MVA3	0.1	0.2	3.1	5.1	1.7	0.0	0.4	1.2

Significant! (~50%)

Need to re-produce all samples!! ...or use B-baryon cut in MC ... may cause bias

Problems in current analysis(2)

- We use a b-dependent variables to be included in MVA (eg. masses in flavor-constrained jet pairing) – Need precut with b-tagging
- -> Statistics limited (now O(1000)) - MVA training is not sufficient

Need more samples for powerful MVA

Samples needed

Mainly needed for MLP/BDT training:

- Signal (ZHH): < 1M, easy
- ZZH, ZZZ, ttqq, bbbb, ZH: < 1M, easy
- ttbar largest problem, may need ~10M
 - Statistics needed because precut of b-tag reduces ttbar sample to ~0.1% before training
- If we include H->WW*, need other events

Since it is not benchmark, we plan to run simulation on these samples in new KEKCC locally (now ~1000 cores usually available, ~2000 in weekend) But may need more generator samples...

Prospects

- Many other ideas for improvements
 - g->bb suppression cuts (main bkg. in ttbar)
 - Jet clustering/pairing ideas
 - Color Singlet clustering
 - Mass Constrained clustering
 - Kinematic fit
 - ZVKIN
 - H -> WW* inclusion
 - Vertex charge

We hope we can fix new result in 2-3 months

Backup

Recent progress (1) jet clustering ZHH → bbbbbb Multi-jet environment **Durham 6-jet** 6000 presence of low energy jets Our method Hard gluon emission 4000 MC truth \rightarrow mistakes jet reconstruction, 2000 especially 2 b-jets combined into \rightarrow degradation in b-counting 0 5 # b jets Jet clustering based on vertex finding 4 b-iet required Avoid combining jet-seeds with bbqqqq efficiency **LCFIVertex** vertices into one jet (old) \rightarrow b-counting efficiency improved 10⁻³ 02 08 Suehara, TILC12 qqbbbb efficiency

Progress (2) Single track vertex

- Normal vertex finder needs
 > 2 tracks
 -> loose many vertices
- Single track vertex can be found by using other vertex direction
- Improves b-tagging performance

Event	0 vtx	1 vtx	>= 2 vtx
bb normal	322	1052	426(24%)
bb +single	322	459	1019(57%)
cc normal	1003	779	18(1.0%)
cc +single	1003	715	82(4.6%)
	A DESCRIPTION OF TAXABLE PARTY.		1

B-tag precut

Jets are sorted by descending order of b-likeness

Event shape MLP

ZHH mass pairing for 4b analysis

- Jet pairing with b-tagging values
 - 1. Z selection
 - Examine mass of least-b-likeness 2 jets if m_z +/- 10 GeV, accepted as Z candidate
 - Otherwise, 3rd least jet is examined (3 combination)
 - 2. Higgs selction
 - Two higgs from remaining four jets
 - Pairing using Higgs mass (nearest pair)
 - Pairing without Higgs mass (use mass difference between two jet-pairs
 - Both masses put to MVA

ZHH mass MLP

tt, ZZH, ZZZ combined bkg.
Moderate separation seen

 Apparently short statistics – need preselections for more...