

Beam-beam effects in luminosity measurement for CLIC (and ILC)

S. Lukić - HEP Group Vinča, Belgrade, Serbia KILC12 workshop, Daegu, South Korea, April 2012

Bhabha scattering

 Luminosity measurement by counting the Bhabha pairs in coincidence

Bhabha scattering

 Deviation from ideally symmetric kinematics due to the emission of beamstrahlung and ISR, as well as the electromagnetic deflection

E_{CM} spectrum at CLIC

 CM energies of colliding e⁻e⁺ pairs in Guinea-PIG

Angular loss at CLIC

 Distortion of polar angles of the outgoing leptons due to the beamstrahlung emission

- Before the inclusion of beam-beam effects, all events inside the FV
- Beam-beam effects simulated by Guinea-PIG
- Polar angles undergo
 the Lorentz boost
 along the beam axis
 (to a very good
 approximation)

Angular loss at CLIC

 Angular loss affects the low-E tail more, but there is a loss of several % in the peak as well

Specific issues for CLIC

- Most e⁻e⁺ collisions occur at energies significantly lower than 3 TeV
- The luminosity in the peak is at least as relevant as the integral luminosity
- Reconstruction of the form of the spectrum is important
- Most events in the low-energy tail invisible to the LumiCal

Beam-beam processes affecting luminosity measurement

Correction of the BS+ISR angular losses

Beamstrahlung and the ISR miss the calorimeter →

Detected showers reveal kinematical information on the colliding system after emission of the BS and the ISR (s, β_{CM} , θ , ...), in the collision frame

Deformation of the polar angles of Bhabha pairs

- Among events with a given β_{coll} (dashed line), the angular counting loss can be analytically calculated
- Correct by the appropriate weighting factor $\theta_{max} d\alpha$

$$w(\beta_{coll}) = \frac{\int\limits_{\theta_{min}} \frac{d\sigma}{d\theta} d\theta}{\int\limits_{\theta_{min}}^{coll} \frac{d\sigma}{d\theta} d\theta}$$

Results of the angular-loss correction

• Reconstructed CM energies (after emission of ISR, without correction of the s-dependence of the Bhabha xs,

LumiCal energy response included)

Test of the angular-loss correction

 To quantify the agreement, the integral count in the top 5% of CM energy after correction was compared to the control histogram:

$$\Delta N/N = (0.4 \pm 0.8) \times 10^{-3}$$

i.e. with the present statistic, there is no significant deviation in the corrected peak

- Relevant CM energy is before the ISR
- ISR energy loss deforms the spectrum
- Deconvolution necessary

ISR energy loss deconvoluted

- Residual deviation in the top 5%: (-3.3 ± 3.2) x 10⁻³
- Bin content weighted by s's when integrating the peak

 The count in the peak is affected by the smearing due to the finite energy resolution

- Peak count deviation due to three effects
 - Cut of the low-energy tail of the Gaussian bell
 - Asymmetric redistribution of counts from each side of the sharp energy cut, due to the slope
 - Weighting error (s'/s)
- These effects can be expressed in terms of the parameters of the energy spread and the underlying functional form of the spectrum
- Correction based on the fitted parameters of the spectrum function and of the energy response

• Safe when sufficiently far from the peak (energy cut at min. 3.5% below $2E_{beam}$)

CLIC - Summary

Step	Residual relative deviation ΔN/N (10 ⁻³)
BS+ISR correction	0.4 ± 0.8
Deconvolution	3.3 ± 3.2
Energy resolution	0.08 ± 0.26
EMD (uncorrected)	0.54 ± 0.08
Events with high eta_{coll}	< 0.1

Conclusions

- The luminosity spectrum at CLIC extends down to almost zero CM energy
- Bhabha events at lower energies mostly invisible to the LumiCal
- Above 2200 GeV, the luminosity spectrum can be measured with good precision, the residual uncertainty in the peak is several permille
- Energy reconstruction capability of the LumiCal is crucial for the √s reconstruction at CLIC
- These and some alternative methods applicable at ILC both the BS and the EMD angular losses can be corrected to better than 1 permille

Thank you!

Additional slides

e⁻e⁺ collision pairs – incoming momenta p_1 , p_2 (collision axis, \sqrt{s} , CM frame)

$$\begin{array}{c|c}
R & < w f(s/s')? \\
\hline
 & yes
\end{array}$$

Calculate the collision axis in the CM frame

Rotate and scale the outgoing momenta in the CM frame, then boost back to the lab frame

BHLUMI / BHWIDE [2]

Bhabha outgoing momenta fixed √s, fixed collision axis

output

[1] D. Schulte, PhD Thesis, Hamburg, 1996

[2] S. Jadach et al., Comp. Phys. Comm. 102, 1997

General analysis steps

- Reconstruct the CM energy after ISR
- Correct for the ISR+BS angular counting loss
- Deconvolute the ISR energy loss
- Correct for the effects of the finite energy resolution
- Correct for the EMD angular counting loss

Test of the angular-loss correction

ISR energy loss

ISR energy loss

$$h(E_{CM,rec}) = \int_{0}^{\infty} f(E_{CM}) g\left(\frac{E_{CM,rec}}{E_{CM}}\right) \frac{1}{E_{CM}} dE_{CM}$$

- Known distribution g(x) of remaining fractions x of CM energy after emission of ISR
 - Parametrize g(x) and fit to the generator results (BHLUMI, BHWIDE)
 - Discretize the equation for $h(E_{CM})$ and solve for f

Residual deviation for peak regions of 3.5% and more

ILC – BS angular losses

- CM energy spectrum reconstructed from polar angles
- The ratio of the tail and peak integrals correlates with the BS component of the BHSE

- Linear fit, independent of the type of beam imperfection
- Depends on the accuracy of the simulation
- Average residual BS 0.04%, max. 0.13% (of the order of the stat.unc.)

ILC – EMD angular losses

$$\frac{\Delta L_{EMD}}{L} = \frac{1}{N} \frac{dN}{d\theta} \Delta \theta$$

obtained by data analysis

$$(\Delta \theta)_{sim.} = \frac{(\Delta L_{EMD}/L)_{sim.}}{\left(\frac{1}{N} \frac{dN}{d\theta}\right)_{sim.}}$$

$$\left(\frac{\Delta L_{EMD}}{L}\right)_{exp.} = \left(\frac{1}{N} \frac{dN}{d\theta}\right)_{exp.} \Delta \theta_{sim.}$$

This can be combined with any method for the Beamstrahlung component

ILC – EMD angular losses

Precise estimate obtained by shifting θ limits by only ±0.2 mrad Method vulnerable to beam-parameter uncertainties Final achievable uncertainty of the order of ±0.5 x 10⁻³