ILD Integration Status

Karsten Buesser

26.04.2012 KILC12

Overview

- Central ILD mechanical model kept at LAL (C. Bourgeois, A. Gonnin)
- Detailed engineering models of subdetectors exist at many places
 - But all should (!) be in ILD EDMS
- As engineering models evolve, deviations between central model and subdetector models occur
- Try to synchronise models now for preparation of the DBD
- Try to keep simulation model (MOKKA) and mechanical model as close as possible
 - Tools for comparison exist
 - In principle there is even a task force (founded in 2010)
 - Reality shows: everything is resource driven....

ILD Mechanical Model

Yoke

- Start with central ring on platform
- Space needed for: tools, scaffolding, surveying equipment

• 200t crane coverage needed

Yoke Assembly - Endcap

Yoke Assembly - Endcap

AHCAL Installation

K. Gadow

AHCAL/ECAL Installation

SDHCAL Mechanical Design

J.C. Inaigro

 Barrel with 5 linked wheels inserted

- rails inside the yoke
- fixation inside the yoke on both sides
- services installation along the yoke to patch pannels

pannels

J.C. Inaigro

AHCAL Tilt?

Ahcal tilt

Tilt of the Ahcal (22.5°) (because of self load deformation)

Problem with actual shape and construction of Ecal endcaps (+ ETD?)

> No tilt in simulation.

Tilted ECAL Endcap

HCAL Orientations

- Decided to postpone final decision on AHCAL tilt
- Mechanical model will keep unrotated version, will comment in DBD

Barrel Calo Services

Cable Paths

Fixing points of the TPC support structure

Main dimensions of the TPC (outside) ØOd = 3616, r=1808 Øld = 658, r=329 = 4700 incl. endplate and Length cabling

- 3 Point 3x120°, preferred gaps: 1,12, 6
 - 4 Point 4x90°, preferred gaps: 3, 15, 11, 7 but this gaps filled 100%

Only the cryostat is foreseen to support the Volker Prahl | ILD Regional Integration Meeting | 12.04.2012 | Page 3 TPC V. Prahl

TPC Support

	HCAL	Cryostat
3x120°	 Accuracy Shorter support structure HCAL deformation Seismic stability 	 + Accuracy - Longer support structure + Cryostat deformation - Seismic stability
4x90°	See above + Seismic stability - More space required	See above + Seismic stability - More space required

Design of the support structure

Inner Detector Support

Fixing the inner part of the TPC

Summary of the requirements:

From the document : "Aligning the ILD Tracker" June, 2009

Precision:

- Precision of Inner Silicon (SIT / FTD)= **5µm**

- Inner parts (SIT, Vertex, FTD, Beam Pipe) are connected to a common support structure **with 6° freedom**.

Hardware systems for monitoring the position and alignment:

- Planned to used a laser beams (same for the ILD detector) complemented by network of fiber optic sensors (Fiber Bragg System – FBS)

Fixing the inner part of the TPC

Needs to continue the study:

Limited access due to the services

Current assembly procedure

Inner detectors cables :

- Estimation of the volume of cables extrapolated from FTD datas :
 - > 2* 12 Volts cables AWG 15 (chips alimentation) to the DC-DC electronic plate
 - > 4 AWG 15 high voltage cable (sensors polarization)
 - > 2 fibers of 300 um diameter (control of the chips and signal of the sensors)
 - I.e full inners : 448 HV+224 LV + 224 OF (VXD not included)
 - 2580 mm² of Al at the position of FTD 7 (single distribution, should be doubled for security reasons)

FTD Detector Cables

SIT Cables

SIT, two solutions

- 1. Along the beampipe : they have to run on backside of FTD2 and 3, then :
 - huge amount of material around BP
 - Material in front of the other FTD
- 2. Run along the inner radius of TPC

C. Clerc

1St patchpanel :

(section of 3 time the occupancy of the cables)

What for :

- 1) connectors for assembly/maintenance operations : importance of their positions
- 2) Optical conversion of signal ?
- 3) DC/DC convertor ?? (depend if already under 12 V as proposed by FTD (only 33 % of the cables are for LV (12 V), the rest : HV for Si sensor polarization)
- 4) Multiplexing of the power distribution in order to reduce the amount of cables along the TPC endplate (less interference with TPC modules cabling, cooling) : but in front of the Ecal endcap : is it better to distribute and average the 2600 mm² of Al on all the surface or to have +/6 12 ways out (215 mm²) (see design of TPC endplates : 12 modules in inner radius)

ulus) C.Clerc

ILD meeting, LAL

but for convertors ??

ILD Placeholders

Overall dimensions

•These are the dimensions currently used in the simulation and corresponding to the overall detector's envelope •All the detailed mechanical design studies were done to stick to those limits

C.Clerc

Placeholders definition

Placeholder 1, corresponds to the structural occupancy, including :

- •Overall mechanical dimensions
- Front end electronic card going overboard the mechanical structure
- Tolerances :
 - ✓ for alignment,
 - ✓ mechanical deformations
 - \checkmark Constructions tolerances
- •Fastening system
- Room for integration's tooling

Placeholder2, concerns the services

- •Place and way-out for cables,
- •Place and way-out for piping,
- •Both should include
 - \checkmark cables or pipes dimensions,
 - ✓ supports
 - ✓ Screening
 - ✓ Patch panels

Alignment systems ?????

in the gaps

Subdetector

dimensions

ILD Dimensions

C. Clerc

Hcal			OK for DHCAI ; Numbers for AHCAL
	Barrel Rin	2058	2058
	Barrel Rout	flat/corner=3345/3410.5	3396/3334
	Barrel 1/2 length	2350 (sensitive =2330)	2340 + 90 electronic boards
	thick.		1293
	EC Rin	square 350	(Checked by A.Gonnin, actual model)
	EC Rout	octogonal 3190(sensitive+elec)	
	EC Zin	2650	
	EC Zout	3937	
	thick.	1287	
Hcal ring	Rin	2190	
Ecal		W/Si, 24 X0, 29 layers, cell 0,25 cm ²	No changes
ТРС			No changes
Fcal (lumical)		W/Si centered on outgoing beam	New datas from W.Wierba@ILDmeeting, may 2011
	Rin(support/sensitiv	e) 76/80	76/80
	Rout active	196	195
	Rout support	240	280 (the inner part of QD0 support = 287.5)
	Zin	2450	?
	Zout	2635	
		W/Si or W/diamond centered on outgoing	
Bcal		beam 30 layers , 3,5 mm each	from L.Zawiejski@ Paris (janv2010)
	Rin(in/outBeams)	13/20	-
	Rout	220(support)	Rout =200(support); 150 (sensors)
	Zin	3595	Zin= 3450 with 10 cm graphite in front
	Zout	3795	Thickness 170 mm ?

Dimensions

C. Clerc

ETD		2 layers		From A.S.N@DESY (jul 2010) 3 XUV planes
	Rin		square 400	620 ?
	Rout		octogonal 1843	<u>circular</u> = 1890 (sensors)/1930 (support)
	Z 1st disk	2420 (support)		
	Z 2nd disk			
	Z 3d disk	2450(support)		Thickness 15 per plane (i.e = 45 mm total)
SET				From A.S.N@DESy (jul 2010) mechanical suppo
	Rin		1818	1921
	Rout		1843	1938 Warning : see Ecal Rin
	Zout		2350	2428 Warning : partly in the gap
VTX				Inner meeting@LLR (june 2010) J.Baudot
	R & 1/2 length	16/62.5		case of 5 layers : single and double sided ladder
		17.9/62.5		VTX-SL1= 15/62,5 VTX-DL= 16-18/62,5
		37/125		VTX-SL2= 26/125 VTX-DL= 37-39/125
		38.9/125		VTX-SL3= 37/125 VTX-DL= 58-60/125
		58/125		VTX-SL4=48/125
		60/125		VTX-SL5= 60/125
VTX cryo				
VTX support shell				
SIT		LOI values		From A.S.N@DESy (jul 2010) mechanical support
	R & 1/2 length	165/190		Rmin-Rmax&1/2length:172,3-179,6/ 354,2
		309/330		Rmin-Rmax&1/2length : 319,5-323,5/657,8
Fdisk		LOI values		in CAD

Dimensions

Fdisk		LOI values	in CAD
	Z/Rin/Rout/	220/24,5/160	220/39/169
		380/40/160	371,3/49,6/169
		660/52/304	644,9/70,1/308
		1070,6/84,4/309	1046,1/100,3/309
		1481,2/116,7/309	1473/130/309
		1891,8/149/309	1848,5/160/309
		2302,5/181,4/309	2250/190/309
muons chamber			
	Layer thick=30mm Fe spacer=100 in the nose part and 400 in endcaps		
		1 layer in inner yoke radius	
		1 layer at outer yoke radius	
		9 layers inside	
	endcap	1 layer at outerendcap yoke position	
		10 layers inside st endcap	

ILD Dimensions

- Need to review values and compare with MOKKA model
- Need to define baseline and options (e.g. ETD, SET,...)
- Agree on placeholders for services
- Please check your subdetector dimensions and help A. Gonnin (LAL) to update the central mechanical CAD model of ILD!

ILD in Maintenance Region (non-mountain site)

R. Volkenborn

CMS Assembly

CMS Assembly

YBO landing in the CMS experiment hall

Japanese Hall Design (Status: 22.03.2012)

• Enlarged Alcoves

G. Orukawa

• 142 m long

- Critical path is defined by central detector construction:
 - central yoke ring, coil, barrel calorimeter, TPC, inner detector
- Will have several coexistent major "construction sites" at the same time in the underground hall:
 - barrel part, both endcaps
 - consecutively: two other barrel yoke rings, QD0 pillar, forward calorimeter
- Time estimate: 3.25 years
- But: need sufficient underground space!
- There are remaining open questions:
 - how does the crane and transport capacity interfere with this plan?
 - when will the cryo services underground be ready (coil test)?
 - ...

Japanese Hall Design (Status: 22.03.2012)

Maintenance Position (ILD Study)

• Alcoves needed to open the detector for maintenance

Underground Construction Space (ILD Study)

- Need several assembly areas in the hall
- Studies on space, transportation and time requirements are on going

ILD Installation Study (Preliminary)

Detector assembly area

- Area 1: Platform
 - YB0 assembly
 - Barrel detectors installation/ cabling
 - Endcap calorimeters installation
- Area 2/3: Alcoves
 - Endcap calorimeters cabling
 - QD0 support tube assembly
 - FCAL install/cabling
- Area 4: Tentative platform on beam line side
 - YE, YB+, YB- (iron yoke and muon detector) assembly/install/ cabling
- Area 5: Loading area side
 - HCAL rings assembly
 - Tooling assembly
 - Storage area

Y. Sugimoto

ILD Installation Study (Preliminary)

- Installation studies are still work in process
- Cross-checks with 3D models are yet to be done
- Implications of common infrastructure use (access tunnel, cranes) not studied yet
 - Might need buffer space
- Clearly: installation of ILD in the mountain site hall is a challenge!

ILD Time Line Study

Y. Sugimoto

- Total construction time: ~8 years
- Detector underground construction: ~3 years

CMS Assembly - Tooling

G.W.Faber ETH-Z 42 LHCC IR April '05

CMS Surface Assembly Hall

Summary and Outlook

- The mechanical and electrical model of ILD gets more realistic
- Some deviations between subdetector models and central model exist
- Some deviations between mechanical model and MOKKA model exist
 - Probably with littel impact (if any) on the physics
- Integration of ILD in the experimental hall is a major issue (cost drivers)

