Tile Tester Status and SiPM Simulation

Patrick Eckert

Kirchhoff-Institut für Physik
HCAL Meeting 13.12.2011

Outline

- Tile Test-System
 - Status
 - Plans
- SiPM Simulation
 - Validation
 - Photon-counting Resolution
 - Outlook
- Summary

Tile Test-System

Tile Test-System

• Motivation:

•Characterization & QA of 8 Mio. scintillator tiles for the final detector

•Challange:

- •Measurement time per tile ca. $1s \cdot n$ (n = number of parallel measurements)
- ⇒Development of a prototype large-scale tile test system

•Tile Tester:

- •Array of ca. 144 tiles
- Positioning stage + measurement head with 12-24 light sources

•Measurements:

- Dark-rate spectrum
- •SPS vs. V_{bias} => V_{break}, gain, corr. noise
- Saturation curve
- •MIP Response

MIP Response: UV-Laser vs. Sr90

•MIP response measurement with Sr90 is too slow for large scale testing

- ⇒Can we use a UV-laser?
 - •First test: tilescan with UV & Sr90
 - •Clear correlation between UV & Sr90 response
 - •UV reproduces Sr90 within +- 2.7%
 - •Tests with more tiles will follow...

Currently working on...

UV-Laser system:

- •UV-light is distributed to 12 24 tiles via optical fibers
- Reference PIN diode
- Temperature monitoring

Reference PIN Diode Tile Array

Temperature measurement:

- •Temperature dependence of parameters cannot be measured for all 8mio tiles
- ⇒Measure distribution of temp. koeffizient for 144 tile
- ⇒We plan to have results in February

SiPM Simulation

SiPM Simulation

•SiPM Simulation:

- Better understanding of SiPM response (e.g. saturation, resolution, timing)
- Optimization studies

•Simulation framework:

- •Shared libraries for integration into external software (e.g. Geant4)
- or standalone GUI

•Input:

basic SiPM parameters:

PDE, gain, cross-talk probability, ...

& light source properties

•Output:

Signal waveform and charge

Simulation Validation – Low V_{Bias}

- Saturation curve influenced by all SiPM parameters
- •Input parameters determined from independend measurements

- •Simulation tested for 100 pixel MPPC
- for low & high operating voltage (noise):
 - •Simulation reproduces data with <5% accuracy!</p>
 - •Similar results expected for other sensors
 - Noise dominated by after-pulses
 - Cross-talk negligible for high intensities

Simulation Validation – High V_{Bias}

- Saturation curve influenced by all SiPM parameters
- •Input parameters determined from independend measurements

- •Simulation tested for 100 pixel MPPC for low & high operating voltage (noise):
 - •Simulation reproduces data with <5% accuracy!</p>
 - •Similar results expected for other sensors
 - Noise dominated by after-pulses
 - Cross-talk negligible for high intensities

Photon-counting Resolution

- •Photon-counting resolution is determined by saturation curve & RMS
- •Linear range:

$$\frac{\Delta N_{\gamma}}{N_{\gamma}} \approx \frac{a}{N_{\gamma}} \oplus \frac{b}{\sqrt{N_{\gamma}}}$$

- •In a whide range dominated by PDE
- For high intensities CT & AP significantly contribute by reducing the dynamic range
- •Good resolution up to 80 firing pixels (outof 100)

Plans

- Characterisation of CPTA SiPMs
- ⇒ Provide simulation model depending only on operating voltage and temperature

•Simulation will soon be available under:

www.kip.uni-heidelberg.de/ilc/GosSiP

Summary

- Construction of large-scale tile tester ongoing
- •Temperature measurements for 144 tiles in the near future

- Detailed SiPM simulation available
 - Excellent description of SiPM response in the full dynamic range
 - Used for first studies of saturation & photon-counting resolution
 - •Implementation of CPTA SiPMs in the near future

Tile Simulation - Outlook

SiPM simulation works fine \rightarrow <u>next Step</u>: simulation of tile-SiPM System

- •Tile Simulation with Geant4, combined with SiPM Simulation:
 - •Link photon hit position & time from Geant4 to SiPM simulation
- •First test (MIP response scan) looks promising

Backup

Backup

Simulation Principle

- •Time & spatial distribution of incident photons from light source class or from external simulation
- •SiPM simulation generates output signal waveform
- Simple DAQ MC to simulate typical characterization measurements
- •Graphical User Interface implemented

Spin-off Studies

- •Other studies with Geant4 + SiPM simulation:
 - •Study of timing and light propagation in szintillation crystals for PET
 - •Study & development of SiPM microlense system improving PDE

Backup

