TTH Full Simulation Study Report Ryo Yonamine (2011. 12. 2) Isolated lepton finding

Two types of Electron ID and Muon ID

```
    PID from pandra PFA using "getType()" method
```

2. My PID (isolated lepton specific)

```
For e+/e-

(ECal_Energy + HCal_Energy)/P > 0.8) &&

(ECal_Energy / (ECal_Energy + HCal_Energy) > 0.9) &&

(ECal_Energy + HCal_Energy != 0) &&

(Charge != 0)

For mu+/mu-

(ECal_Energy + HCal_Energy)/P < 0.3) &&

(ECal_Energy / (ECal_Energy + HCal_Energy) < 0.5) &&

(ECal_Energy + HCal_Energy != 0) &&

(Charge != 0)
```

Efficiency:

of the particles that are recognized as isolated lepton candidates and are truly isolated leptons divided by # of true isolated leptons

Purity:

of the particles that are recognized as isolated lepton candidates and are truly isolated leptons divided by # of isolated lepton candidates

Pandora PFA PID case

	efficiency	purity
isolated electron	0.42	0.60
isolated muon	0.44	0.60
isolated electron/muon	0.43	0.60

My PID case

	efficiency	purity
isolated electron	0.84	0.59
isolated muon	0.92	0.59
isolated electron/muon	0.88	0.59

Why purity is so low? (Plan)

Because

- e/mu from Higgs or tau can be recognized as the candidates.
- There are "W --> e/mu" processes in ttH samples.

H-->mu,nu will not be a problem because we will require H-->bb at later stage.

As for "W --> e/mu" processes (W do not have the parent.), In order to understand this process I'm checking the MC information.

In order to reduce leptons from jets

--> Will add Do, Zo cut and optimize the requirement for isolated lepton (cone energy vs energy plots)