Analysis of W-AHCAL data

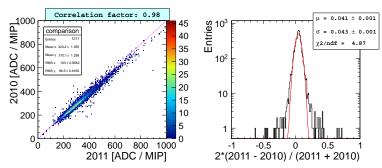
Ching Bon Lam, Angela Lucaci-Timoce

Introduction

2010 data

- W-AHCAL: 30 layers
- Energies: 1-10 GeV
- Dedicated muon runs in CERN T7
- Mixed runs (e, π, μ, p) in CERN T9

2011 data


- W-AHCAL: 38 layers
- TCMT added
- Energies: 10-300 GeV
- Mixed runs (e, π, μ, p, K) in CERN PS and SPS
- Dedicated muon runs, detector scans

Analysis strategy

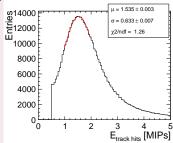
- Final goals:
 - Energy resolution
 - Shower shapes
 - Comparison with GEANT4 models
 - ⇒ analysis note/paper
- Combine 2010/2011 data
- Start with e⁺/e⁻ (electromagnetic showers are theoretically simple, good tool for checking the calibration)
- Once calibration validated, continue with hadrons

MIP calibrations

- AHCAL response calibrated using muons as MIPs
- Two calibration data sets: 2010 and 2011 ⇒ need to check:
 - Quality of MIP determination
 - Consistency between the 2 sets
- Quality: cleaned MIP values by visual scan and rerunning the fit when possible (see examples in my talk in HCAL main meeting Dec. 2010)
- After clean up, the 2 sets are well correlated

Still a 4% shift (maybe due to differences in hold values)

Temperature correction

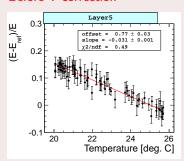

- How to correct for T?
 - ullet SiPM response depends inversely linear with $T\Rightarrow$ measure slopes and use them for correction

How to measure MIP *T* slopes?

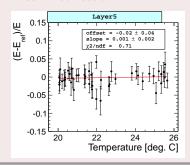
- Reconstruct data (without T correction)
- Find muons
- Look at the variation of the muon energy with T

How to measure muon energy?

- Find muons hits with PrimaryTrackFinder (other methods tried, but results not so stable), with additional cuts
- Fit single hit energy spectra (Gaussian, limited range)



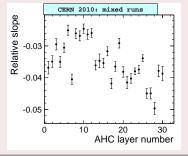
Temperature correction: 2010


 MIP variation with temperature is corrected for by applying a relative slope per layer

Example: layer 5

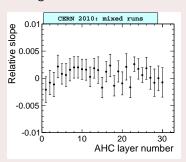
Before T correction

After T correction



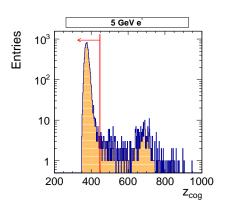
Temperature correction: 2010

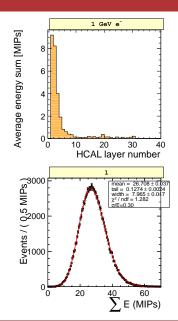
All layers:

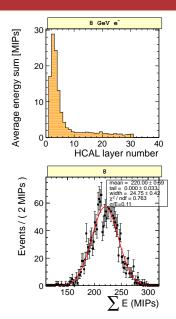

Before T correction:

average
$$= -3.5\%$$

After T correction:

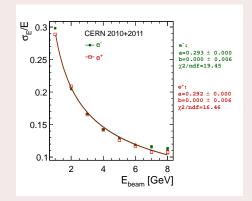

average
$$= 0.\%$$


• 2010: relative slopes ok, can be used for analysis

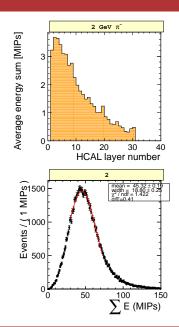

2010: Selection of e^-/e^+ events

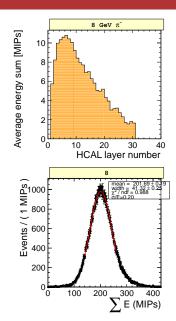
- First: identify particles based on Cherenkov triggers
- But: still muon (and some pion) contamination
- Select e based on $z_{cog} = \frac{\sum z_i \cdot E_i}{\sum E_i}$

2010: Selection of e^-/e^+ events


2010: Electromagnetic energy resolution

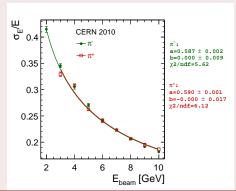
Fe-AHCAL


- ullet One layer: 16+2+2 mm Fe $pprox 1.14~X_0$
- ullet arXiv:1012.4343 $\dfrac{\sigma}{E}=\dfrac{21.9\%}{\sqrt{E}}\oplus 1.0\%\oplus \dfrac{0.0058}{E}$

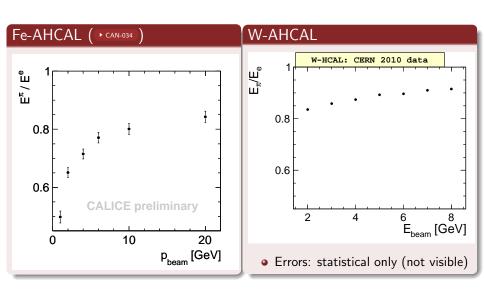

W-AHCAL

- 2010 data: e^-/e^+ content at E>5 GeV very low, show only up to 8 GeV
- One layer: 10 mm W + +4 mm Fe \approx 3.13 X_0 \Rightarrow expect "worse" EM resolution
- Fit: $\frac{\sigma}{E} = \frac{a}{\sqrt{E}} \oplus b$
- Noise term to be added
- Not final numbers

2010: Selection of π events


2010: π^-/π^+ energy resolution

Fe-AHCAL


- One layer: 20 mm Fe \approx 0.1 λ_I
- CAN-035 Without software compensation $\frac{\sigma}{E} = \frac{57.6\%}{\sqrt{E}} \oplus 1.6\% \oplus \frac{0.18}{E}$

W-AHCAL

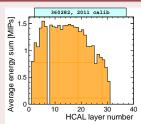
- One layer: 10 mm W + +4 mm Fe \approx 0.1 λ_I \Rightarrow expect similar π resolution
- Fit: $\frac{\sigma}{E} = \frac{a}{\sqrt{E}} \oplus b$
- Not final numbers

2010: π/e ratio

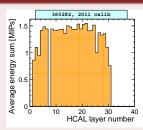
Summary and conclusions

- Cleaning of MIP fits/constants done
- Developed tools for measuring MIP slopes per layer
- Problematic AHCAL layers (25-30) when looking at the muon energy vs temperature:
 - 2010: separate bands for pure muon runs and mixed runs
 - 2011: effect due to a few very central tiles, present for almost all the runs
- Energy resolution:
 - Electrons: lower than for Fe-AHCAL (as expected)
 - Pions: comparable to Fe-AHCAL
 - Protons and kaons: to come
- Comparisons with Monte Carlo: on the way
- You can follow developments by looking at the W-AHCAL analysis meetings on the CERN indico page: http://indico.cem.ch/categoryDisplay.py?categld=2533

Backup


Muon selection improved

Improved muon selection with additional cuts (after PrimaryTrackFinder):


- Maximum 2 hits per layer
- At least 20 hits in an event
- At least 20 active layers
- Reject punch-through pions with: energyPerLayer < 3 · median, where median = TMath :: Median(30, energyPerLayerArray)

→ Go back to talk

W/O cuts

With cuts

