

Study of SiW-ECAL performance with reduced number of layers

Trong Hieu TRAN Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3

University of Texas @ Arlington, USA

Outlook

- Motivation
- ECAL with different number of layers
- Performance for ECAL is studied by estimating energy resolution using PandoraPFANew
 - Check of calibration using photons, K's, muons at 10 GeV
 - For $Z \rightarrow uds$ events at c.m. energies 91, 200, 360, 500 GeV
 - Single photon events at 1, 10, 100 and 500 GeV
- Software: ILCSOFT v01-16 (with latest tracking)
- Summary

Motivations

SiW-ECAL is one of the major cost drivers of ILD

 S_{si} : total Si surface R_{TPC} : TPC radius e_1 : layer thickness e : total thickness of all layers L_{barrel} : Barrel length

- For its cost-effectiveness, one may reduce
 - TPC radius (studied by M. Thomson @ LoI)
 - or the number of layers
- Five alternative SiW-ECAL models have been studied for baseline detector ILD_01_v05
- Other configurations are the same for all models (total W thickness, 2 stacks, 1:2 ratio of W thickness, cooling layers, carbon fibre, ...)

ECAL model	W layers	Layer thickness (mm)
30 layers	20	2.1
	9	4.2
26 layers	17	2.4
	8	4.8
20 layers	13	3.15
	6	6.3
16 layers	10	4.0
	5	8.0
12 layers	7	5.32
	4	10.64
10 layers	6	6.65
	3	13.30

Simulations & softwares in use

- Calibration are checked using
 - 5000 photons at 10 GeV
 - ◆ 5000 K[']_L's at 10 GeV
 - 5000 muons at 10 GeV
 - All events are with flat cos(θ) and flat φ,
 a cut |cos(θ)|<0.7 is however applied to avoid barrel/endcap region
- Energy resolution is estimated for
 - ◆ Z → uds events at c.m. energies 91, 200, 360, 500 GeV
 - Photons at 3, 100, 200 and 500 GeV
 - 10k events for each energy
- The simulations are done for all ECAL models
- PandoraPFANew in ILCSOFT version: v01-16 with latest tracking.

EM calibration: photons @ 10 GeV

The EM calibration was re-estimated for each ECAL model

- Distribution of reconstructed energy, fraction of energy in ECAL and total calometer energy are shown
- Calibration looks good for all ECAL models

EM calibration: photons @ 10 GeV

- Check of EM calibration by looking at HCAL energy vs ECAL energy
- Energy division between HCAL and ECAL looks reasonable for all models

Check for HCAL calibration: K_L's at 10 GeV

- HCAL calibration is checked using K_L events with energy 10 GeV with flat cos(theta) and phi
- Division between HCAL and ECAL energies needs to be taken in to account

No large differences observed for different ECAL models

Check for HCAL calibration: K_L at 10 GeV

- Energy distributions of reconstructed K₁ look reasonable
- Fraction of energy deposited in the ECAL is similar for all models

Check MIPS calibration: muon at 10 GeV

• The HCAL MIP calibration does not change between models

- However, the ECAL MIP calibration constants need to be retuned,
 - these constants were simply rescaled by W thickness
 - there are differences between models but the effect is very small

Jet & photon energy resolution study for ECAL performance

$Z \rightarrow uds$ events: linearity

Jet energy resolution vs $cos(\theta_jet)$

- Jet energy resolution presented in function of cos(θ) of first jet
- No significant problem found among full region of cos(θ)
- Example for Z→uds 91 GeV sample

Jet energy resolution

- JER is transformed to single JER and plotted as a function of number of layers for 91, 200, 360, 500 GeV Z → u/d/s.
- 9% of degradation is observed going from 30 to 20 layers for 91 GeV sample and more significant to lower number of layers
- effect is less important for higher energies

Single JER presented in function of Nb of layers. A cut |cos(theta_jet)| < 0.7 is applied to avoid the Barrel/Endcap overlap area

Single JER shown in function of number of layers. The error bars are taken from a fit.

$$\frac{\operatorname{rms}_{90}(E_j)}{E_j} = \frac{\operatorname{rms}_{90}(E_{jj})}{E_{jj}}\sqrt{2}$$

Jet energy resolution vs Energy

 Same behavior for all models: JER rather flat for energies 200 - 500 GeV, increases towards low jet energy.

Single JER in function of C.M. energy for ECALs with different number of layers.

Sampling fraction

N : population size (total number of events) n : sample size – chosen to be within Mean $\pm \sigma$

- Sampling fraction (SF) shown for different jet energy as a function of number of layers
- SF is comparable between ECAL models

Photon energy: linearity

Photon energy resolution

- Photon energy resolution shown in function of generated photon energy for different ECAL models (left) and in function of number of layers for different energy (right)
- Slight degradation observed going from 30 to 20 layers and quite significant with smaller number of layers (16 downto 10)

- Degradation of ~9% in single JER observed for 45 GeV jets going from 30 to 20 layers
- More significant degradation going to smaller number of layers
- Difference between ECAL models is less significant with jet at high c.m. energies (200 - 500 GeV)
- Study of photon energy resolution shows a similar behavior when reducing Si in ECAL

Extra slides

Comparison

results for ILD_00 with ILCSOFT v01-13-05 ILD_01_v05 with ILCSOFT v01-16 ٧S

Presented at ILD analysis meeting 26 Sept 2012

ILD_00 to ILD_01_v05, new drivers for calorimeters

New tracking

PandoraPFA constants were optimised for Jet energy

35

