Tony Price

SPiDeR Collaboration

Digital ECAL

TPAC Sense INMAPS Technology

Beam Test Overview

Data Checking

Noise Rate

Pixel Efficiencies

Clusters

Shower Multiplicit

Shower Density

Conclusions

DECAL using MAPS technology: Beam test results

Tony Price $^{\rm 1}$

University of Birmingham

txp@hep.ph.bham.ac.uk

 $24^{\rm th}$ October 2012

¹on behalf of the SPiDeR Collaboration

Overview

DECAL using MAPS technology

Tony Price

- SPiDeR Collaboration
- TPAC Senso INMAPS Technology
- Beam Test Overview
- Data Checking
- Noise Rate
- Pixel Efficiencie
- Clusters
- Shower Multiplicity
- Shower Density
- Conclusions

- 1 SPiDeR Collaboration
- 2 Digital ECAL
- 3 TPAC Sensor INMAPS Technology
- 4 Beam Test Overview
- **5** Data Checking
- 6 Noise Rate
- Pixel Efficiencies
- 8 Clusters
- 9 Shower Multiplicity
- Shower Density
- ① Conclusions

Tony Price

SPiDeR Collaboration

Digital ECAL

TPAC Sense INMAPS Technology

Beam Test Overview

Data Checking

Noise Rate

Pixel Efficiencies

Clusters

Shower Multiplicity

Shower Density

Conclusions

SPiDeR Collaboration

• SPiDeR - Silicon Pixel Detector R&D

- Generic Pixel R&D for particle physics applications using CMOS sensors
- Members from
 - Imperial College London
 - Rutherford Appleton Laboratory / STFC
 - University of Birmingham
 - University of Bristol
 - University of Oxford
 - Queen Mary University of London

Tony Price

SPiDeR Collaboration

Digital ECAL

TPAC Sense INMAPS Technology

Beam Test Overview

Data Checking

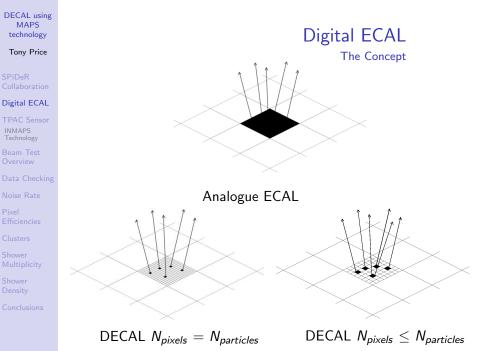
Noise Rate

Pixel Efficiencies

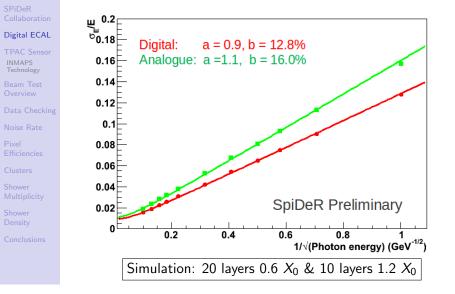
Clusters

Shower Multiplicity

Shower Density


Conclusions

• Make a pixellated calorimeter to count the particles in each sampling layer


Digital ECAL

The Concept

- Digital readout
- Ensure the pixels are small enough to avoid multiple particles passing through a single pixel
 - Avoid undercounting and non-linearity in higher particle density environments
- Max density of 100 $particles/mm^2$ leads to pixel sizes of 50 μm^2
- Digital variant of an ECAL at the ILC would need 10^{12} channels!!
- Dead area and power consumption per channel must be kept to a minimum

Digital ECAL Energy Resolution Vs analogue ECAL

DECAL using MAPS

technology Tony Price

Tony Price

SPiDeR Collaboration

Digital ECAL

TPAC Sensor INMAPS Technology

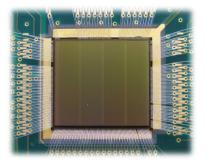
Beam Test Overview

Data Checking

Noise Rate

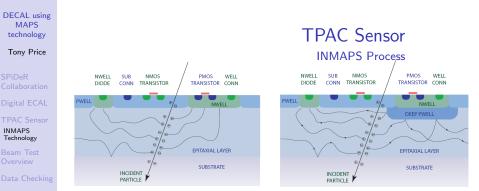
Pixel Efficiencies

Clusters


Shower Multiplicity

Shower Density

Conclusions


TeraPixel Active Calorimeter Sensor CMOS sensor designed with the DECAL requirements in mind

- 168×168 pixel grid
- 50 \times 50 μ m² pixel size
- Digital readout
- Low noise
- Utilise INMAPS process
- 42 pixels served by one strip of SRAM and logic
- Charge collected by diffusion to signal diodes
- Sensor sampled every 400 ns (timestamp)
- Sensor readout every 8000 timestamps (bunch train)

TPAC Sensor

Noise Rate

Pixel Efficiencies

Clusters

Shower Multiplicity

Shower Density

Conclusions

CMOS architecture causes parasitic charge collection at the N-wells reducing the pixel efficiency. INMAPS technology uses a **deep P-well** which inhibits the parasitic collection increasing the signal at the diodes. Allows use of standard full CMOS

- lower cost fabrication at multiple foundaries
- allows different resitivity epitaxial layers
 - 12 μ m standard INMAPS (standard sensor)
 - 12/18 μ m high resistivity INMAPS

Beam Test Overview

Data Checking

DECAL using MAPS

technology Tony Price

Noise Rate

Pixel Efficiencies

Clusters

Shower Multiplicity

Shower Density

Conclusions

Beam tests of TPAC sensors conducted at

- CERN 20-120 GeV pions
- DESY 1-5 GeV electrons

to study the sensor response to Minimum Ionising Particles (MIPs) and particle showers

Tony Price

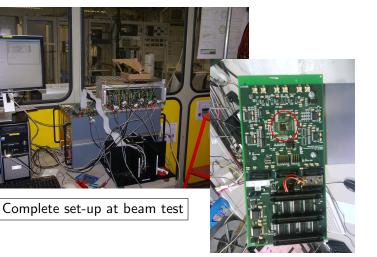
SPIDER Collaboration Digital ECAL TPAC Sensor INMAPS Technology

Beam Test Overview

Data Checking

Noise Rate

Pixel Efficiencies


Clusters

Shower Multiplicity

Shower Density

Conclusions

Beam Test Overview

Bonded sensor

Tony Price

SPIDER Collaboration Digital ECAL TPAC Sensor INMAPS Technology

Beam Test Overview

Data Checking

Noise Rate

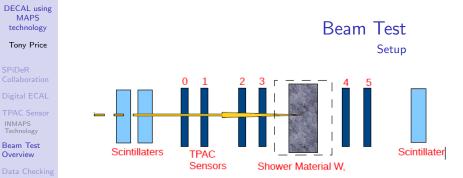
Pixel Efficiencies

Clusters

Shower Multiplicity

Shower Density

Conclusions



1 behind

- TPAC stack operated in two modes:
 - 1 Tracking: Tracks were formed in sensors 0145 and projected into 34 to study properties of the sensor
 - 2 Showering: Shower material placed between sensors 34, tracks formed in sensors 0123, shower studied in sensors 45

NB: Active area just $9 \times 9 \text{ mm}^2$ so in *Showering* mode don't expect full containment. Repeated data taking runs with varying depth of shower material.

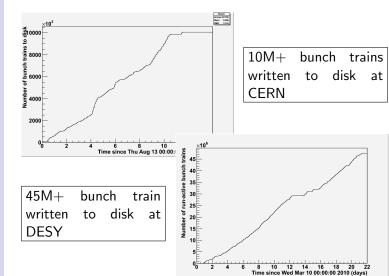
Tony Price

SPIDER Collaboration Digital ECAL TPAC Sensor INMAPS Technology

Beam Tes Overview

Data Checking

Noise Rate


Pixel Efficiencie

Clusters

Shower Multiplicity

Shower Density

Conclusions

Data Checking

Tony Price

SPiDeR Collaboration

Digital ECAL

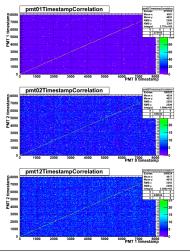
TPAC Senso INMAPS Technology

Beam Test Overview

Data Checking

Noise Rate

Pixel Efficiencies


Clusters

Shower Multiplicit

Shower Density

Conclusions

Data Checking PMT Correlations

Clear correlations between the PMT triggers

Tony Price

SPiDeR Collaboration

Digital ECAL

TPAC Sens INMAPS Technology

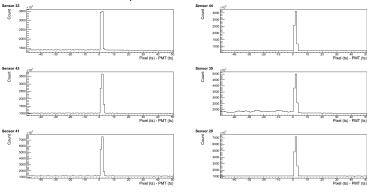
Beam Test Overview

Data Checking

Noise Rate

Pixel Efficiencies

Clusters


Shower Multiplicity

Shower Density

Conclusions

Data Checking Hit Timings

Plot the timestamp of all hits w.r.t PMT coincidence timestamps in all 6 sensors of an run.

All genuine hits occur in an event window of $0{<}\Delta t{<}3$

Tony Price

SPiDeR Collaboration Digital ECAL

TPAC Sense INMAPS Technology

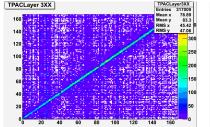
Beam Test Overview

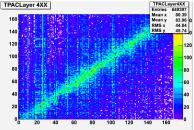
Data Checking

Noise Rate

Pixel Efficiencies

Clusters


Shower Multiplicit


Shower Density

Conclusions

Data Checking Hit Correlations

Comparing all of the hits in time between sensors look for correlations between sensors to show alignment.

Can see clear correlations between layers before W Correlations broader downstream due to showering

Tony Price

SPiDeR Collaboratio

Digital ECAL

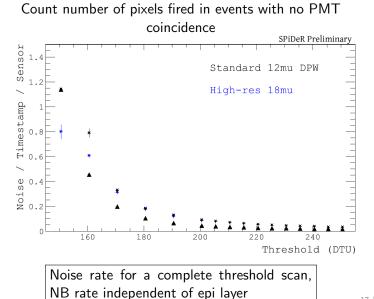
TPAC Sense INMAPS Technology

Beam Test Overview

Data Checking

Noise Rate

Pixel Efficiencie


Clusters

Shower Multiplicit

Shower Density

Conclusions

Noise Rate

17 / 28

Tony Price

SPiDeR Collaboration

Digital ECAL

TPAC Senso INMAPS Technology

Beam Test Overview

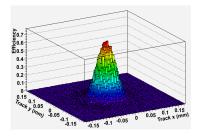
Data Checking

Noise Rate

Pixel Efficiencies

Clusters

Shower Multiplicity


Shower Density

Conclusions

Pixel Efficiencies to MIPS

Studies conducted for both pions and electrons at CERN and $\ensuremath{\mathsf{DESY}}$

- Formed a track in the event
- Project the track into sensor
- Look for hits around the projection and look for hit probability
- Fit the resulting distribution (right) to extract efficiency

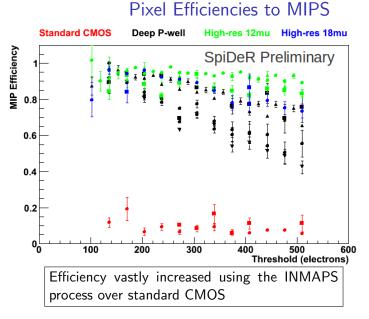
Tony Price

Collaboration Digital ECAL TPAC Sensor INMAPS

Beam Test Overview

Data Checking

Noise Rate


Pixel Efficiencies

Clusters

Shower Multiplicity

Shower Density

Conclusions

Clusters

DECAL using MAPS technology

Tony Price

SPiDeR Collaboration

Digital ECAL

TPAC Senso INMAPS Technology

Beam Test Overview

Data Checking

Noise Rate

Pixel Efficiencies

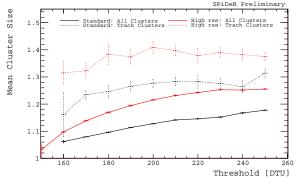
Clusters

Shower Multiplicity

Shower Density

Conclusions

Algorithm


- Assume all hits within narrow event window occur at the same time
- Search hits for pixels which fire in multiple timestamps
- Find clusters using a seed pixel and searching nearest neighbours for hits
- Continue until all hits are formed into clusters

Types

- Single pixel clusters
- Single pixel clusters which fire in multiple timestamps
- Multiple pixel clusters

Clusters

Sizes

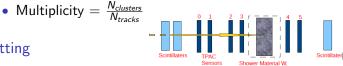
- High res yields larger cluster sizes due to increase charge collection eff
- Noise cluster size = 1, \sim 1–2 clusters/event, low DTU noise rate high, mean cluster size \uparrow as noise rate \downarrow
- Track associated cluster sizes stable with DTU

DECAL using MAPS

technology Tony Price

Clusters

Tony Price


Shower Multiplicity

Shower Multiplicity

Event Selection

Fitting

- Utilised DESY data with stack set in Showering mode.
- Found tracks in sensors 0123 (>3 hits)
- Demand a single track to avoid overlapping showers
- Track must go through central region of sensors 45

- Plotted Mean Multiplicity Vs $\frac{x}{\chi_0}$
- $\frac{dE}{dt} = E_0 b \frac{(bt)^{a-1} \exp(-bt)}{\Gamma(a)}$ 2

²http://pdg.lbl.gov/2010/reviews/rpp2010-rev-passage-particlesmatter.pdf

Tony Price

SPiDeR Collaboration Digital ECAL

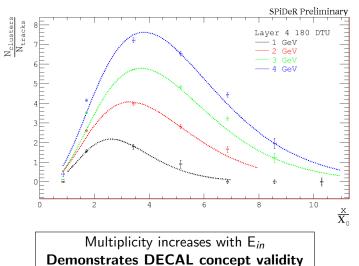
INMAPS Technology

Beam Test Overview

Data Checking

Noise Rate

Pixel Efficiencies


Clusters

Shower Multiplicity

Shower Density

Conclusions

Shower Multiplicity 180 DTU Overlayed

Tony Price

Collaboration Digital ECAI TPAC Senso

Technology

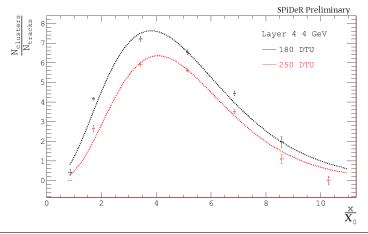
Beam Test Overview

Data Checking

Noise Rate

Pixel Efficiencies

Clusters


Shower Multiplicity

Shower Density

Conclusions

Shower Multiplicity

Threshold Comparison

Threshold comparison shows reduction in efficiency as expected

Tony Price

SPiDeR Collaboration Digital ECAL TPAC Sensor

INMAPS Technology

Beam Test Overview

Data Checking

Noise Rate

Pixel Efficiencies

Clusters

Shower Multiplicity

Shower Density

Conclusions

Same event selection as shower multiplicity

Event Selection

• Utilised DESY data with stack set in *Showering* mode.

Shower Density

- Found tracks in sensors 0123 (\geq 3 hits)
- Demand a single track to avoid overlapping showers
- Track must go through central region of sensors 45

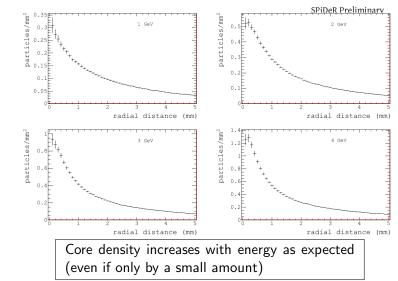
Core Density Calculation

- Take track projection as cone centre
- Scan out distances of r from centre
- Count number of particles within search area
- Calculate density within search area
- Create density profile for different radii

Tony Price

Collaboration Digital ECAL TPAC Sensor INMAPS Technology Beam Test Overview Data Checkir Noise Rate Pixel Efficiencies

Clusters


Shower Multiplicity

Shower Density

Conclusions

Shower Density

3.43 χ_0 tungsten

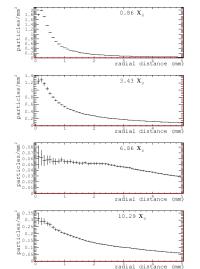
Tony Price

Collaboration Digital ECAL TPAC Sensor INMAPS Technology

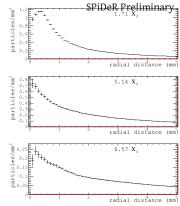
Beam Test Overview

Data Checking

Noise Rate


Pixel Efficiencies

Clusters


Shower Multiplicity

Shower Density

Conclusions

Shower Density 4 GeV Samples

Biggest density at smaller χ_0 due to smaller scattering angle

Conclusions

DECAL using MAPS technology

Tony Price

- SPiDeR Collaboration
- Digital ECAL
- TPAC Senso INMAPS Technology
- Beam Test Overview
- Data Checking
- Noise Rate
- Pixel Efficiencie
- Clusters
- Shower Multiplicity
- Shower Density
- Conclusions

- TPAC sensor designed to meet the requirements of DECAL
- 2 beam tests completed with 55M+ bunchtrains written to disk
- Noise rate varies exponentially with DTU independent of epitaxial layer
- INMAPS process raises MIP efficiency by factor of ${\sim}5$
- Shower multiplicities increase with increasing energy demonstrating the DECAL concept to be valid
- More data is required at higher energies to study shower densities