

SiW ECAL Technological Prototype Test beam results

Thibault Frisson (LAL, Orsay) on behalf of the CALICE collaboration

Advanced European Infrastructures for Detectors at Accelerators

SiW ECAL for a future LC

SiW ECAL is one of the prototypes for future LC detectors

The SiW ECAL in the ILD Detector

Basic Requirements:

- Extreme high granularity
- Compact and hermetic

Basic Choices:

- Tungsten as absorber material
 - X_0 =3.5mm, R_M =9mm, λ_1 =96mm
 - Narrow showers
 - Assures compact design
- Silicon as active material
 - Support compact design
 - Allows for pixelisation
 - Large signal/noise ratio

Physics Prototype

Proof of principle

2003 - 2011

Technological Prototype

Engineering challenges

LC detector

Number of channels : 9720 Weight : ~ 200 Kg

Number of channels : 45360 Weight : ~ 700 Kg ECAL : Channels : ~100 10⁶ Total Weight : ~130 t

Physics prototype

Carbon-fibre mechanical structure

30 layers of tungsten: 24 X₀, 1 λ_1

 $S/N \sim 8$

$$\sigma_{\rm F}$$
 / E = 16.5/ $\sqrt{\rm E}({\rm GeV})$ + 1.1 %

10k channels

Studied in various test beam facilities

2006-2011: DESY, CERN, FNAL, e-, π , μ , p (1 \rightarrow 180 GeV)

6x6 PIN Diode Matrice – 1 x 1 cm²

Thickness: 525µm

LCWS - Arlington 2012

Oct. 24 2012

Technological solutions for the final detector

Construction start: 2010

- Realistic dimensions
- Integrated front end electronic
- Small power consumption (Power pulsed electronics)

The road to the technological prototype

Intermediate step: (See Rémi Cornat's Talk)

- First test in beam
 - Benchmark to go further
 - U structure (single detection layer per slab)
 - Si wafer:
 - $9x9 \text{ cm}^2$ Thickness = 320 μ m

Trigger delay

16

- **pixel size: 5x5 mm**² : lateral granularity = 4 x better than physics prototype
- SKIROC2 ASICs
- 4 ASICs per slab (1/4 final design)

First test beam with the technological prototype

DESY – April and July 2012

e- (1 - 5 GeV)

• 6 layers (FEV8)

- Internal trigger

Total = 1536 channels PreAmplifiers of noisy channels are switched off total active channels = 1278

• PVC structure

- position for tungsten plates (2.1 mm)

Goals:

- Determine signal over noise ratio of the detector
- Operate first layers of the technological prototype
- Establishment of calibration procedure for a large number of cells
- Homogeneity of response (x,y scan of detector)

Calibration of ASICs

Establishment of calibration procedure for a larger number of cells

S-Curves for all the channels

Oct. 24 2012

Beam spot

Hits

18

16

14

12

10

8

6

Hits_XY

34329

7.422

8.889

3.348

3.974

900

800

700

600

500

400

300

200

100

Entries

Mean x

Mean y

RMS x

RMS y

Oct. 24 2012

Detection efficiency

Data: 3GeV – No W – XY scan Total number of events: 2,3.10⁶ Track selection:

> At least 3 layers with hits Linear fit of the e- track Nhits<10

Inefficiencies due to:

Switched off channels Too high trigger thresholds (80%-95% of the MIP) Should be improved with the next test beam (December)

Oct. 24 2012

Energy measurement

Oct. 24 2012

Energy calibration

Establishment of calibration procedure for a larger number of cells Homogeneity of response (x,y scan of detector)

Oct. 24 2012

Signal over noise ratio

R&D target is 10:1

S/N > 10

(for all gains available with SKIROC2)

Event display

2 e- (3 GeV, no tungsten)

1 cosmic + 1 e- (3 GeV, no tungsten)

1 e- (5 GeV) 5 W plates between layers

Successful beam test

Excellent stability of the DAQ Stable operation of the wafers and the electronic

Establishment of calibration procedure for a larger number of cells Homogeneity of response studies

- Energy calibration
- Detection efficiency

Determination of the signal over noise ratio: S/N > 10

Hardware effects revealed.

Data and detector about to be understood.

Test beam in December > Power pulsing

Special thanks to our experts: Frédéric, Mickael, Patrick, Rémi and Stéphane

And to everyone who took part in the preparation of the test beam:

- LLR, LAL+OMEGA, LPNHE
- Kyushu University, Tokyo University, Nippon Dental University
- SKKU

