Potential for probing the Majorana nature in radiative neutrino masses at a future linear collider

Mayumi AOKI (Kanazawa U./ MPIK)

MA, S. Kanemura, PLB689 (2010) MA, S. Kanemura, H. Yokoya, paper in preparation

LCWS12 22-26 Oct. 2012, U. of Texas, Arlington, USA

1. Introduction

Radiative seesaw model

Neutrino masses are generated via the radiative effect.

N-loop:
$$m_{\nu}^{ij} = \left(\frac{1}{16\pi^2}\right)^N \frac{f_{ij}}{\Lambda} \langle \phi^0 \rangle^2$$

- Due to the loop suppression factor, Λ can be lower.

Neutrino masses would be explained by the TeV-scale physics.

1. Introduction

Radiative seesaw model with N_{R}

- Majorana mass term of N_R is the source of the lepton number violation.
- Z_2 symmetry N_R : odd, SM: even
 - forbids the Dirac ν mass term.
 - guarantees the stability of the DM.

⇒ The model would explain the neutrino mass and the DM.

1. Introduction

Common feature

1. Extend scalar sector

2. N_R (Majorana nature)

- 1. The discovery of extra scalar bosons can give partial evidence.
- 2. The detection of the N_R can be a fatal probe to identify the model.

- There are diagrams of the t-channel exchange of N_R .
- These t-channel effects show specific dependences on the √s in the production cross section. Atwood, Bar- Shalom, Soni, PRD76 (2007)

→ One of the discriminative features of radiative seesaw models.

Contents

1. Introduction

2. Ma model

3. AKS model

4. Discussion & Summary

Ma Model

2. Ma Model

Inert doublet model + N_R

field	$SU(2)_L \times U(1)_Y$	Z_2
(u_{Li}, l_i)	(2, -1/2)	+
l^c_i	(1, 1)	+
$\Phi = (\Phi^+, \Phi^0)$	(2, 1/2)	+
$\Xi = (\xi^+, \xi^0)$	(2, 1/2)	—
N_R^c	(1,0)	

Ma, PRD73,077301 (2006)

• Ξ does not have the vev. $\xi^0 = (\xi_r + i\xi_i)/\sqrt{2}$

Scalar sector:			
Z ₂ even : h (SM-like)			
Z ₂ odd: ξ_r , ξ_i , ξ^{\pm}			

• Neutrino mass matrix

$\underline{\xi_r} DM$

Relic density, Direct search $\rightarrow m_{\xi r} = 45-78 \text{ GeV}$

Gustafsson et al., arXiv:1206.6316 [hep-ph]

2. Ma Model

Benchmark scenario :

22-26 Oct. 2012, U. of Texas, Arlington, U.S.A LCWS12

2. Ma Model

22-26 Oct. 2012, U. of Texas, Arlington, USA 9

AKS Model

3. AKS Model

2HDM + singlet scalars $(\eta, S^{\pm}) + N_R$

MA, Kanemura, Seto, PRL102 (2009), PRD80 (2009) MA, Kanemura, Yagyu, PRD83 (2011)

	$SU(2)_L \times U(1)_Y$	Z_2
$\mathbf{L^{i}}$	(2, -1/2)	+
${ m e}^{ m i}_{ m R}$	(1, -1)	+
Φ_1	(2, 1/2)	+
Φ_2	(2, 1/2)	+
\mathbf{S}^{-}	(1, -1)	_
η^{0}	(1,0)	—
$\mathbf{N}_{\mathbf{R}}^{lpha}$	(1,0)	—

• Neutrino mass

U

U

 v_L^i

(Type-II: $m_{H\pm} \ge 300 \text{ GeV by } b \rightarrow s\gamma \text{ constraint}$)

$$\begin{array}{c} \mathbf{x} & \mathbf{y}^{0} \\ \mathbf{H}^{-} & \mathbf{y}^{0} \\ \mathbf{y}_{i} \\ \mathbf{y}_{i} \\ \mathbf{e}_{\mathbf{R}}^{i} \\ \mathbf{h}_{i}^{a} \\ \mathbf{N}_{\mathbf{R}}^{\mathbf{G}\,a} \\ \mathbf{h}_{j}^{a} \end{array} \qquad \mathbf{h}_{i}^{d} \\ \begin{array}{c} \mathbf{M}_{ij} = \left(\frac{1}{16\pi^{2}}\right)^{3} \sum_{\alpha=1}^{2} 4\kappa^{2} \tan^{2}\beta(y_{e_{i}}^{\mathrm{SM}}h_{i}^{\alpha})(y_{e_{j}}^{\mathrm{SM}}h_{j}^{\alpha}) \frac{(-m_{N_{R}}v^{2})}{m_{N_{R}}^{2} - m_{\eta}^{2}} F(m_{H^{\pm}}, m_{S^{\pm}}, m_{N_{R}^{\alpha}}, m_{\eta}) \\ \begin{array}{c} \mathbf{M}_{ij} = \left(\frac{1}{16\pi^{2}}\right)^{3} \sum_{\alpha=1}^{2} 4\kappa^{2} \tan^{2}\beta(y_{e_{i}}^{\mathrm{SM}}h_{i}^{\alpha})(y_{e_{j}}^{\mathrm{SM}}h_{j}^{\alpha}) \frac{(-m_{N_{R}}v^{2})}{m_{N_{R}}^{2} - m_{\eta}^{2}} F(m_{H^{\pm}}, m_{S^{\pm}}, m_{N_{R}^{\alpha}}, m_{\eta}) \\ \begin{array}{c} \mathbf{M}_{ij} = \left(\frac{1}{16\pi^{2}}\right)^{3} \sum_{\alpha=1}^{2} 4\kappa^{2} \tan^{2}\beta(y_{e_{i}}^{\mathrm{SM}}h_{i}^{\alpha})(y_{e_{j}}^{\mathrm{SM}}h_{j}^{\alpha}) \frac{(-m_{N_{R}}v^{2})}{m_{N_{R}}^{2} - m_{\eta}^{2}} F(m_{H^{\pm}}, m_{S^{\pm}}, m_{N_{R}^{\alpha}}, m_{\eta}) \\ \begin{array}{c} \mathbf{M}_{ij} = \left(\frac{1}{16\pi^{2}}\right)^{3} \sum_{\alpha=1}^{2} 4\kappa^{2} \tan^{2}\beta(y_{e_{i}}^{\mathrm{SM}}h_{i}^{\alpha})(y_{e_{j}}^{\mathrm{SM}}h_{j}^{\alpha}) \frac{(-m_{N_{R}}v^{2})}{m_{N_{R}}^{2} - m_{\eta}^{2}} F(m_{H^{\pm}}, m_{S^{\pm}}, m_{N_{R}^{\alpha}}, m_{\eta}) \\ \begin{array}{c} \mathbf{M}_{ij} = \left(\frac{1}{16\pi^{2}}\right)^{3} \sum_{\alpha=1}^{2} 4\kappa^{2} \tan^{2}\beta(y_{e_{i}}^{\mathrm{SM}}h_{i}^{\alpha})(y_{e_{j}}^{\mathrm{SM}}h_{j}^{\alpha}) \frac{(-m_{N_{R}}v^{2})}{m_{N_{R}}^{2} - m_{\eta}^{2}} F(m_{H^{\pm}}, m_{S^{\pm}}, m_{N_{R}^{\alpha}}, m_{\eta}) \\ \begin{array}{c} \mathbf{M}_{ij} = \left(\frac{1}{16\pi^{2}}\right)^{3} \sum_{\alpha=1}^{2} 4\kappa^{2} \tan^{2}\beta(y_{e_{i}}^{\mathrm{SM}}h_{i}^{\alpha})(y_{e_{j}}^{\mathrm{SM}}h_{j}^{\alpha}) \frac{(-m_{N_{R}}v^{2})}{m_{N_{R}}^{2} - m_{\eta}^{2}} F(m_{H^{\pm}}, m_{S^{\pm}}, m_{N_{R}^{\alpha}}, m_{\eta}) \\ \begin{array}{c} \mathbf{M}_{ij} = \left(\frac{1}{16\pi^{2}}\right)^{3} \sum_{\alpha=1}^{2} 4\kappa^{2} \tan^{2}\beta(y_{e_{i}}^{\mathrm{SM}}h_{j}^{\alpha}) \frac{(-m_{N_{R}}v^{2})}{m_{N_{R}}^{2} - m_{\eta}^{2}} F(m_{N_{R}}, m_{N_{R}^{\alpha}}, m_{\eta}) \\ \begin{array}{c} \mathbf{M}_{ij} = \left(\frac{1}{16\pi^{2}}\right)^{3} \sum_{\alpha=1}^{2} 4\kappa^{2} \tan^{2}\beta(y_{e_{i}}^{\mathrm{SM}}h_{j}^{\alpha}) \frac{(-m_{N_{R}}v^{2})}{m_{N_{R}}^{2} - m_{\eta}^{2}} F(m_{N_{R}}, m_{\eta}) \\ \begin{array}{c} \mathbf{M}_{ij} = \left(\frac{1}{16\pi^{2}}\right)^{3} \sum_{\alpha=1}^{2} 4\kappa^{2} \tan^{2}\beta(y_{e_{i}}^{\mathrm{SM}}h_{j}^{\alpha}) \frac{(-m_{N_{R}}v^{2})}{m_{N_{R}}^{2} - m_{\eta}^{2}} F(m_{N_{R}}, m_{N_{R}}, m_{\eta}) \\ \begin{array}{c} \mathbf{M}_{ij} = \left(\frac{1}{16\pi^{2}}\right)^{3} \sum_{\alpha=1}^{2} 4\kappa^{2} + m_{N_{R}}^{$$

3. AKS Model

constraints:

- LFV : $\mu \rightarrow e\gamma$, $\mu \rightarrow 3e \rightarrow m_{NR} \ge 5 \text{ TeV}$, $m_{S\pm} \ge 400 \text{ GeV}$
- LEP precision measurement : $\varrho \approx 1$

$$\rightarrow m_{H\pm} = m_H \text{ for sin}(\beta - \alpha) = 1$$

 $\mu = \frac{S^{\pm}}{N_R^{\beta}} e \qquad \mu = \frac{N_R}{S^{\pm}}$

• Theoretical constraints (vacuum stability & triviality)

22-26 Oct. 2012, U. of Texas, Arlington, USA Mayumi Aoki LCWS12 12

3. AKS Model

22-26 Oct. 2012, U. of Texas, Arlington, USA 13

Mayumi Aoki LCWS12

3. AKS Model

Electroweak Baryogenesis

- Source of CP violation \rightarrow 2HDM: There is a physical phase in the Higgs potential.

3. AKS Model

Higgs self-coupling

The self coupling measurement can provide an important test of the EWBG scenario.

$$h - - - \left(\begin{array}{c} h \\ \frac{\partial^3}{\partial \varphi^3} V_{eff}[\varphi] \right|_{\varphi = v} = \lambda_{hhh}$$

• In the region for the strong 1st order PT, the deviation becomes more than 10-20%, which is expected to be tested at the ILC.

22-26 Oct. 2012, U. of Texas, Arlington, USA Mayumí Aokí LCWS12 15

3. AKS Model

Mayumi Aoki

CWS12 22-26 Oct. 2012, U. of Texas, Arlington, U.S.A

• \sqrt{s} scan helps to confirm that the signal rate comes from the t-channel diagrams.

<u>e⁻e⁻ collision option</u>

D=5 operator, e-e- ϕ + ϕ +, is the sub-diagram of the loop diagrams for v mass.

Direct test of the radiative seesaw models.

4. Discussion

 The signal in the AKS model and the Zee-Babu model can be observed.
 The e-e- collision experiment is useful to test the Majorana nature of radiative seesaw models.

1. Extend scalar sector can be explored at (the LHC and) the ILC.

2. *N_R* (Majorana nature) can be tested at the ILC in AKS model via the t-channel processes.

Thank you for your attention.