

MDI Update from SiD

Marco Oriunno , SLAC LCWS12, UTA Arlington, TX October 22-26, 2012

Detailed Baseline Document Submitted on 9/24

SiD

DETAILED BASELINE DESIGN

DRAFT SUBMITTED TO THE IDAG 24/September/2012

- 7 Engineering, Integration and the Machine Detector Interface
 - 7.1 Introduction
 - 7.2 IR Hall Layout Requirements and SiD Assembly Concepts
 - 7.2.1 Vertical Access (RDR style)
 - 7.2.2 Horizontal Access (Japan style)
 - 7.2.3 Detector Access for Repairs
 - 7.3 Detector Exchange Via a Sliding Platform
 - 7.3.1 Introduction
 - 7.3.2 Platform
 - 7.3.3 Vibration analysis and Luminosity Preservation
 - 7.3.4 Push Pull Detector Exchange Process and Time Estimate
 - 7.4 Beampipe and Forward Region Design
 - 7.4.1 Introduction to the Near Beamline Design
 - 7.4.2 Beampipe
 - 7.4.3 LumiCal, BeamCal, Mask and QD0 Support and Alignment
 - 7.4.4 QD0-QF1 interface
 - 7.4.5 Vacuum System and Performance
 - 7.4.6 Feedback and BPMs
 - 7.4.7 Wakefield and Higher Order Mode Analysis
 - 7.4.8 Frequency Scanning Interferometric (FSI) Alignment of QD0 and QF1
 - 7.4.9 Routing of Detector Services
 - 7.5 Impact on the Adjacent Detector While SiD is Operational
 - 7.5.1 Radiation Calculations
 - 7.5.2 Fringe Fields and Magnetics

Compact design with 5 T Solenoid Single Ring Barrel ~ 4'000 tons

Self Shielded: Stray Fields & Radiation

Short L* with QD0's supported from the doors

Barrel Ecal	60
Barrel Hcal	450
Coil	192
Barrel Iron	3287
Total Barrel	3990
Endcap Ecal	10
Endcap Hcal	38
Endcap Iron	2100
Pacman	100
Feet	60
BDS	5
Total Door (x1)	2313
Total SiD	8615

Detailed Baseline Document Submitted on 9/24

SiD

DETAILED BASELINE DESIGN

DRAFT SUBMITTED TO THE IDAG 24/September/2012

- 7 Engineering, Integration and the Machine Detector Interface
 - 7.1 Introduction
 - 7.2 IR Hall Layout Requirements and SiD Assembly Concepts
 - 7.2.1 Vertical Access (RDR style)
 - 7.2.2 Horizontal Access (Japan style)
 - 7.2.3 Detector Access for Repairs
 - 7.3 Detector Exchange Via a Sliding Platform
 - 7.3.1 Introduction
 - 7.3.2 Platform
 - 7.3.3 Vibration analysis and Luminosity Preservation
 - 7.3.4 Push Pull Detector Exchange Process and Time Estimate
 - 7.4 Beampipe and Forward Region Design
 - 7.4.1 Introduction to the Near Beamline Design
 - 7.4.2 Beampipe
 - 7.4.3 LumiCal, BeamCal, Mask and QD0 Support and Alignment
 - 7.4.4 QD0-QF1 interface
 - 7.4.5 Vacuum System and Performance
 - 7.4.6 Feedback and BPMs
 - 7.4.7 Wakefield and Higher Order Mode Analysis
 - 7.4.8 Frequency Scanning Interferometric (FSI) Alignment of QD0 and QF1
 - 7.4.9 Routing of Detector Services
 - 7.5 Impact on the Adjacent Detector While SiD is Operational
 - 7.5.1 Radiation Calculations
 - 7.5.2 Fringe Fields and Magnetics

Assembly Procedures for different Sites

- The assembly procedure will be different for the two sites
- Both layouts must satisfy push-pull requirements
- The detector hall must be optimized for costs: benefits vs. features

Site Development (Assembly Hall area) Access Portal Access Road Access Road Vertical Shaft Length: 200 m ~ 400 m

•Vertical shafts (Europe, Americas)

Vertical Shaft Access

MAAAAAAA

1

1

M

Âá

- Five shafts Layout : single large shaft above the IP, two smaller shafts on the alcoves, two shafts for personnel access.
- Cost optimization vs. features, like IP commissioning

without detectors.

Surface assembly a la CMS

- 1. Assembly of Iron Doors+Barrel on surface
- 2. Commissioning of the magnet on surface
- 3. Large capacity gantry

To Damping Ring

Installation tunnel

e⁻

9

Site Delivery prior the start of the Detector Assembly

- 1. Two Cranes 215 tons,
- 2. Platforms
- 3. Minimum set of infrastructures (Power, Compr. Air, etc.)
- 4. Pacmen can wait until detectors are ready

Door Assembly on the platform

66 Tons

- 11 trips from Surface /Door
- 1 heavy lift / day

Solenoid Installation

HCAL Barrel Assembly

SLD, Liquid Argon Calorimeter Assembly Beam Plan A : Cold Boxes are stationary. Cold Transfer lines to each detector. Reliability for push-pull. Not off-the-shelf.
Plan B : Cold Boxes on the platform. Warm Transfer lines to each cold box. Vibrations, fringe field effects, space

Integration of the Cryogenic plant on the platform

Main LHe refrigerator and LHe2 for the QD0's above level on metallic structure.

Detailed Baseline Document Submitted on 9/24

SiD

DETAILED BASELINE DESIGN

DRAFT SUBMITTED TO THE IDAG 24/September/2012

- 7 Engineering, Integration and the Machine Detector Interface
 - 7.1 Introduction
 - 7.2 IR Hall Layout Requirements and SiD Assembly Concepts
 - 7.2.1 Vertical Access (RDR style)
 - 7.2.2 Horizontal Access (Japan style)
 - 7.2.3 Detector Access for Repairs
 - 7.3 Detector Exchange Via a Sliding Platform
 - 7.3.1 Introduction
 - 7.3.2 Platform
 - 7.3.3 Vibration analysis and Luminosity Preservation
 - 7.3.4 Push Pull Detector Exchange Process and Time Estimate
 - 7.4 Beampipe and Forward Region Design
 - 7.4.1 Introduction to the Near Beamline Design
 - 7.4.2 Beampipe
 - 7.4.3 LumiCal, BeamCal, Mask and QD0 Support and Alignment
 - 7.4.4 QD0-QF1 interface
 - 7.4.5 Vacuum System and Performance
 - 7.4.6 Feedback and BPMs
 - 7.4.7 Wakefield and Higher Order Mode Analysis
 - 7.4.8 Frequency Scanning Interferometric (FSI) Alignment of QD0 and QF1
 - 7.4.9 Routing of Detector Services
 - 7.5 Impact on the Adjacent Detector While SiD is Operational
 - 7.5.1 Radiation Calculations
 - 7.5.2 Fringe Fields and Magnetics

Vibrations

Most acute luminosity loss mechanism due to relative jitter of final focusing magnet elements : <u>Ground Motion and Mechanical vibration sources</u>

ILC has Active Fast Feedback based on beam trajectory after collision

Lumi loss due to beam offset in SD0 (beamsize growth) and IP misalignment of beams

Full Dynamic Model ground-to-QD0

see C.Collette's talk in this workshop at the Joint BDS/MDI......

Other Vibrations Study activities :

- •Ground vibrations (Correlation) measurements at LHC, Point4
- •Experimental vibrations of the CMS Platform
- •Benchmark of FEA with concrete reinforced structure
- •Ground geology modeling

Detailed Baseline Document Submitted on 9/24

SiD

DETAILED BASELINE DESIGN

DRAFT SUBMITTED TO THE IDAG 24/September/2012

- 7 Engineering, Integration and the Machine Detector Interface
 - 7.1 Introduction
 - 7.2 IR Hall Layout Requirements and SiD Assembly Concepts
 - 7.2.1 Vertical Access (RDR style)
 - 7.2.2 Horizontal Access (Japan style)
 - 7.2.3 Detector Access for Repairs
 - 7.3 Detector Exchange Via a Sliding Platform
 - 7.3.1 Introduction
 - 7.3.2 Platform
 - 7.3.3 Vibration analysis and Luminosity Preservation
 - 7.3.4 Push Pull Detector Exchange Process and Time Estimate
 - 7.4 Beampipe and Forward Region Design
 - 7.4.1 Introduction to the Near Beamline Design
 - 7.4.2 Beampipe
 - 7.4.3 LumiCal, BeamCal, Mask and QD0 Support and Alignment
 - 7.4.4 QD0-QF1 interface
 - 7.4.5 Vacuum System and Performance
 - 7.4.6 Feedback and BPMs
 - 7.4.7 Wakefield and Higher Order Mode Analysis
 - 7.4.8 Frequency Scanning Interferometric (FSI) Alignment of QD0 and QF1
 - 7.4.9 Routing of Detector Services
 - 7.5 Impact on the Adjacent Detector While SiD is Operational
 - 7.5.1 Radiation Calculations
 - 7.5.2 Fringe Fields and Magnetics

Space Requirements

Current QD0 Prototype is designed for L* 4.5 m

L* 3.5 m cross section

QD0 Wedge Design Concept

Height of pad and distance of displacement will be changed pending analysis on sagging of beam line.

Conceptual design only at this point

Potentiometer

Limit Switches

HOM heating at the IP and in QD0 (S.Novokhatski, SLAC)

- Beam fields
- Wake potentials and loss power
- Trapped and propagating modes
- Frequency spectrum
- Resistive wake fields
- Total power loss

Example of Wakefields

- The amount of beam energy loss in IR is very small.
- Spectrum of the wake fields is limited to 300 GHz
- Average power of the wake fields excited ~30 W nominal (6 kW pulsed)
- In the QD0 region the additional losses are of 4W (averaged) .
- BPMs and kickers must be added.

Detailed Baseline Document Submitted on 9/24

SiD

DETAILED BASELINE DESIGN

DRAFT SUBMITTED TO THE IDAG 24/September/2012

- 7 Engineering, Integration and the Machine Detector Interface
 - 7.1 Introduction
 - 7.2 IR Hall Layout Requirements and SiD Assembly Concepts
 - 7.2.1 Vertical Access (RDR style)
 - 7.2.2 Horizontal Access (Japan style)
 - 7.2.3 Detector Access for Repairs
 - 7.3 Detector Exchange Via a Sliding Platform
 - 7.3.1 Introduction
 - 7.3.2 Platform
 - 7.3.3 Vibration analysis and Luminosity Preservation
 - 7.3.4 Push Pull Detector Exchange Process and Time Estimate
 - 7.4 Beampipe and Forward Region Design
 - 7.4.1 Introduction to the Near Beamline Design
 - 7.4.2 Beampipe
 - 7.4.3 LumiCal, BeamCal, Mask and QD0 Support and Alignment
 - 7.4.4 QD0-QF1 interface
 - 7.4.5 Vacuum System and Performance
 - 7.4.6 Feedback and BPMs
 - 7.4.7 Wakefield and Higher Order Mode Analysis
 - 7.4.8 Frequency Scanning Interferometric (FSI) Alignment of QD0 and QF1
 - 7.4.9 Routing of Detector Services
 - 7.5 Impact on the Adjacent Detector While SiD is Operational
 - 7.5.1 Radiation Calculations
 - 7.5.2 Fringe Fields and Magnetics

20 R.L. Cu target in IP-9 m. Large pacman.

M.Santana, SLAC

20 R.L. Cu target in IP-14 m. Large pacman. M.Santana, SLAC

9 MW ----->

- The maximum integrated dose per event is ~8 µSv << 30 mSv
- The corresponding peak dose rate is ~140 mSv/h < 250 mSv/h

Fringe Field for a quadrant view of SiD Cut off @ 200 Gauss

What next:

A list of MDI and Integration issues need further development

Machine – Detector Integration

- •Alignment of detector to beam line after transport on platform.
- Platform design progress.
- •Surface Assembly Facilities.
- •Local Control Rooms.
- •Interaction Region Hall utilities:
- •Welding constraints: Ventilation, permits, etc.
- •Local machine shop.
- Detector access: Man lifts, crane baskets?

Detector Specific Integration

- Iron optimization: Review:
- Detector Alignment Procedures:
- •Internal Detector Services:
- •Vents:
 - 1.He
 - 2.Steam? (Dump resistor)
 - 3.Other
- Detector platforms and access stairs.

EXTRA SLIDES

Iron Barrel Yoke layout

140

Bolted assembly, 144 plates 200 mm thick, 40mm gap Opportunity to make blank assembly at the factory before shipping

Preliminary Contacts with Kawasaki Heavy Industries

- Plate thickness tolerance for each: 0.1mm
- Plate flatness: 4mm (in a plate)
- Fabrication (assembling & welding) tolerance: 2mm
- Full trial assembly: capable (but need to study)

