Higgs self-coupling study at ILC

---based on the ILD full simulation

Junping Tian (KEK) Taikan Suehara (Tokyo U') Tomohiko Tanabe (Tokyo U') Keisuke Fujii (KEK)

LCWS12, Oct. 22-26, 2012 @ UT Arlington

outline

• introduction

- new weighting method to enhance the sensitivity of coupling
- status of DBD analysis: ZHH @ 500 GeV
- vvHH (fusion) @ 1TeV based on SGV simulation
- summary and conclusion

new weighting method

$$\frac{\mathrm{d}\sigma}{\mathrm{d}x} = B(x) + \lambda I(x) + \lambda^2 S(x)$$

irreducible interference self-coupling

find a weight function: w(x)

observable: weighted cross-section

$$\sigma_{w} = \int \frac{\mathrm{d}\sigma}{\mathrm{d}x} w(x) \mathrm{d}x$$
$$= \int B(x)w(x)\mathrm{d}x + \lambda \int I(x)w(x)\mathrm{d}x + \lambda^{2} \int S(x)w(x)\mathrm{d}x$$
$$B_{w} \qquad I_{w} \qquad S_{w}$$

weighting

$$\lambda = -\frac{I_w}{2S_w} \pm \frac{\sqrt{I_w^2 - 4S_w B_w + 4S_w \sigma_w}}{2S_w}$$
$$\Delta \lambda|_{\lambda = \lambda_{SM}} = \frac{\Delta \sigma_w}{I_w + 2S_w} = \frac{\sqrt{\int \sigma(x) w^2(x) dx}}{\int I(x) w(x) dx + 2\int S(x) w(x) dx}$$

minimize the error of coupling (variance principle)

equation of the optimal w(x):

$$\sigma(x)w_0(x) \int (I(x) + 2S(x))w_0(x) dx = (I(x) + 2S(x)) \int \sigma(x)w_0^2(x) dx$$

general solution:

$$w_0(x) = c \cdot \frac{I(x) + 2S(x)}{\sigma(x)}$$

c: arbitrary normalization factor

weighting functions

weighted cross section (from toy monte-carlo)

assuming 100 signal events (~54 from non-self-coupling)

sensitivity

 $\frac{\Delta\lambda}{\lambda} = 0.85 \frac{\Delta\sigma}{\sigma}$ $\frac{\Delta\lambda}{\lambda} = 0.69 \frac{\Delta\sigma_w}{\sigma_w} = 0.76 \frac{\Delta\sigma}{\sigma}$

7

Status of DBD analysis $e^+ + e^- \rightarrow ZHH @ 500 \ GeV$

main improvements to the LoI analysis:

talk by T. Suehara

- better flavor tagging (tracking, PFA, LCFIPlus, B-baryon fixed)
- better lepton selection (muon detector, vertex constrained, bremsstrahlung and FSR recovered)

main backgrounds in each mode:

- IIHH: Ilbb (ZZ, γZ, bbZ), lvbbqq (tt-bar), llbbbb (ZZZ/ZZH)
- vvHH: bbbb (ZZ, γZ, bbZ), τvbbqq (tt-bar), vvbbbb (ZZZ/ZZH)
- qqHH: bbbb (ZZ, γZ, bbZ), bbqqqq (tt-bar), qqbbbb (ZZZ/ZZH)

ongoing ongoing preliminary

a neural-net is trained for each dominant background process (in total 9)

to make the result more stable, ~20 ab⁻¹ statistics is needed (now ~10 ab⁻¹ available)

$$e^+ + e^- \to ZHH \to (q\bar{q})(b\bar{b})(b\bar{b}) \to q\bar{q} + 4$$
 bjets

pre-selection:

- isolated-charged-leptons rejected
- 6-jets clustering (LCFIPlus, Durham)

full simulation @ 500GeV

- *generator: Whizard 1.95
 *simulation: ilcsoft-v01-14-01
 *reconstruction: ilcsoft-v01-16
 *flavor tagging: LCFIPlus
- combine the six jets by minimizing, and require the b tagging

$$\chi^2 = \frac{(M(b,\bar{b}) - M_H)^2}{\sigma_{H_1}^2} + \frac{(M(b,\bar{b}) - M_H)^2}{\sigma_{H_2}^2} + \frac{(M(q,\bar{q}) - M_Z)^2}{\sigma_{Z_2}^2}$$

requirement implied in the pre-selection:

b-tagged four jets from two Higgs (b-likeness > 0.16)

final selection:

- separate to two categories: bbHH dominant and light qqHH dominant
- train the neural-nets, each event is also reconstructed as from ZZ, ttbar, ZZZ and ZZH, and various variables are input to NN
- all cuts are optimized

some distributions

preliminary P(e-,e+)=(-0.8,+0.3)

reduction table (probZ1+probZ2 > 0.56) $E_{\rm cm} = 500 {\rm GeV}, M_H = 120 {\rm GeV}$ $\int Ldt = 2 {\rm ab}^{-1}$

normalized	expected	МС	pre- selection	probZ1+probZ2>0.56	MissPt < 60	MLP_bbbb>0.7 4	MLP_bbqqqq> 0.34	MLP_qqbbbb> 0.0	Bmax3>0.82 Bmax4>0.21
qqhh(qqbbbb)	310(129)	3.73×10 ⁵	111(85.3)	26.7(23.0)	25.9(22.8)	20.6(18.8)	20.1(18.4)	20.0(18.3)	12.4(11.8)
bbbb	4.02×10 ⁴	7.19×10 ⁵	22889	2289	2253	9.04	8.06	7.94	3.32
lvbbqq	7.40×10 ⁵	3.56×10 ⁶	17240	357	172	8.47	6.69	6.69	0.03
qqbbbb	140	3.03×10 ⁴	82.3	13.6	13.5	7.43	6.96	3.94	2.36
bbuddu	1.56×10 ⁵	8.87×10 ⁵	565	11.2	11.2	8.82	6.73	6.73	0.73
bbcsdu	3.12×10 ⁵	1.26×10 ⁶	6109	86.8	86.4	61.6	44.6	44.1	2.41
bbcssc	1.56×10 ⁵	1.17×10 ⁶	12456	256	254	177	126	125	4.71
qqqqH(ZZH)	381		not available yet						
ttqq	2169		not available yet						
BG			59342	3013	2790	273	199	197	11.0

bbHH dominant:

 $nS = 12.4, nB = 11.0 \sim 2.7\sigma$

preliminary P(e-,e+)=(-0.8,+0.3)

reduction table (probZ1+probZ2 < 0.56) $E_{\rm cm} = 500 {\rm GeV}, M_H = 120 {\rm GeV}$ $\int Ldt = 2 {\rm ab}^{-1}$

normalized	expected	МС	pre- selection	probZ1+probZ2<0.56	MissPt < 60	MLP_bbbb>0.6 3	MLP_bbqqqq> 0.55	MLP_qqbbbb> 0.15	Bmax3>0.85 Bmax4>0.43
qqhh(qqbbbb)	310(129)	3.73×10 ⁵	111(85.3)	84.3(62.3)	80.9(61.8)	66.9(53.5)	45.9(37.7)	44.5(36.6)	21.4(18.6)
bbbb	4.02×10 ⁴	7.19×10 ⁵	22889	20600	20282	152	62.9	53.5	25.6
lvbbqq	7.40×10 ⁵	3.56×10 ⁶	17240	16884	7937	536	115	105	1.36
qqbbbb	140	3.03×10 ⁴	82.3	68.7	68.3	42.5	20.7	14.9	7.03
bbuddu	1.56×10 ⁵	8.87×10 ⁵	565	554	550	434	105	99.2	11.3
bbcsdu	3.12×10 ⁵	1.26×10 ⁶	6109	6022	5987	4559	977	917	25.4
bbcssc	1.56×10 ⁵	1.17×10 ⁶	12456	12200	12115	9181	1655	1556	19.2
qqqqH(ZZH)	381		not available yet						
ttqq	2169		not available yet						
BG			59342	56329	46939	14906	2936	2745	89.9

light qqHH dominant:

 $nS = 21.4, nB = 89.9 \sim 2.0\sigma$

Isolated lepton selection (llHH)

electron ID

- Eecal/Etot > 0.9
- 0.5 < Etot/P < 1.3
- from primary vertex
- P > 12.2 + 0.87Econe

(Etot = Eecal + Ehcal)

muon ID

- Eyoke > 1.2
- Etot/P < 0.3
 - from primary vertex
- ne P > 12.6 + 4.62Econe

BS and FSR recovery adapted from ZFinder

efficiency of two isolated lepton selection (much better for DBD)

Eff (%)	eeHH	μμΗΗ	bbbb	evbbqq	µvbbqq
DBD	85.7	88.4	0.028	1.44	0.10
LoI	81.9	85.4	0.43	2.71	1.94

analysis ongoing ...

	Expect	tation of I	OBD anal	ysis pr	eliminary		
P(e-,e+)=(-0.8,0.3)	e^+ -	$+ e^- \rightarrow ZH$		H) = 120 GeV	$\int Ldt = 2ab^{-1}$		
	Modes	signal		significance			
Energy (GeV)			background	excess (I)	measurement (II)		
500	$ZHH ightarrow (lar{l})(bar{b})(bar{b})$		-	-	-		
500	$ZHH ightarrow (u ar{ u}) (b ar{b}) (b ar{b})$	-		-	-		
500	$ZHH ightarrow (qar{q})(bar{b})(bar{b})$	12.4	11.0	3.1σ	2.7σ		
		21.4	89.9	2.2σ	2.0σ		

- qqHH mode only, significance is already as same as using all modes in LoI
- similar improvement would be expected for llHH and vvHH modes (~20%)

 $\sigma_{ZHH} = 0.22 \pm 0.05$ fb

precision of cross section: 24%

Higgs self-coupling: 43%

after using weighting, would be:

Color-singlet Jet Finder

(project under developing)

- the mis-clustering of particles degrades the mass resolution very much
- it is studied using perfect color-singlet jet-clustering can improve $\delta\lambda \sim 40\%$

- Mini-jet based clustering (Durham works when Np in mini-jet ~ 5, need better algorithm to combine the mini-jets, using such as color-singlet dynamics)
- looks very challenging now...

	analysis using the perfect jet-clustering preliminary (similar strategy) cheated analysis Polarization: (e-,e+)=(-0.8,0.3) $e^+ + e^- \rightarrow ZHH M(H) = 120 \text{GeV} \int Ldt = 2ab^{-1}$								
Energy (GeV) Modes signal background exc ((((((significance cess measurement (I) (II)								
$500 \qquad ZHH \rightarrow (l\bar{l})(b\bar{b})(b\bar{b}) \qquad 9.8 \qquad 3.9 \qquad 3.2$	7σ 2.8σ								
$500 \qquad ZHH \to (\nu\bar{\nu})(b\bar{b})(b\bar{b}) \qquad 12.6 \qquad 8.1 \qquad 3.6$	6σ 2.9σ								
EVALUATE: $(1,\overline{z})(1\overline{L})(1\overline{L})$ 12.2 11.9 3.0	0σ 2.6σ								
$500 \qquad ZHH \to (qq)(bb)(bb) \\ 17.7 \qquad 29.5 \qquad 2.9$	9σ 2.6σ								
500 combined 8.1	1σ 5.2σ								
$\sigma_{ZHH} = 0.22 \pm 0.04 \text{ fb}_{(0.07)}$ $\sigma_{\sigma} = 20\% \text{ (32\%)}$ $\frac{\delta \lambda}{\lambda} = 36\% \text{ (57\%)}$									

 $e^+ + e^- \rightarrow \nu \bar{\nu} H H \rightarrow \nu \bar{\nu} (b\bar{b}) (b\bar{b})$

SGV fast simulation @ 1 TeV

*generator: Whizard 1.95 (DBD)
*simulation: SGV (ILD_00)
*reconstruction: ilcsoft-v01-15

- pre-selection:
 - no isolated lepton, ISR tag

four jets, each with more than 8 particles, 3rd Btagging > 0.2
 final-selection:

- Visible energy: Evis < 500 + 3*MissPt, Pt > 10 GeV (cut1)
- Missing mass (Z rejection): > 200 GeV (cut2)
- tt-bar suppression: $MLP_lvbbqq > 0.82$ (cut3)
- vvZZ and vvZH suppression: MLP_vvbbbb > 0.59 (cut4)
- B-tagging: Bmax3 > 0.49 (cut5)

signal and backgrounds (reduction table)

preliminary Polarization: (e-,e+)=(-0.8,+0.2) $E_{\rm cm} = 1 \text{ TeV}, M_H = 120 \text{ GeV}$ $L = 2 \text{ ab}^{-1}$

	Expected	Generated	pre-selction	cut1	cut2	cut3	cut4	cut5
vvhh (WW F)	272	9.20×10 ⁴	104	97.9	96.5	75.8	44.8	35.6
vvhh (ZHH)	74.0	4.76×10 ⁵	26.8	17.9	14.7	7.15	4.46	3.67
vvbbbb	650	4.43×10 ⁵	481	466	459	162	4.18	3.28
vvccbb	1070	5.10×10 ⁵	200	193.6	189	64.4	1.56	0.22
bbxyyx	2.92×10 ⁵	1.05×10^{6}	14102	563	530	20.6	12.4	0.91
evbbqq	1.16×10 ⁵	6.22×10 ⁵	620	462	353	34.6	6.42	0.83
μνbbqq	1.08×10^{5}	6.39×10 ⁵	366	255	196	10.1	2.25	0.49
τvbbqq	1.08×10^{5}	6.37×10 ⁵	3502	2184	1741	104	33.9	4.47
ννΖΗ	3125	5.00×10^{4}	449	441	439	296	21.4	13.1
ttH	6952	1.00×10^{5}	88.6	59.7	55.1	1.40	0.96	0.68
BG	6.37×10 ⁵		19835	4643	3978	701	87.4	27.6
significance	0.34		0.74	1.42	1.51	2.72	3.90	4.48

 $\frac{\Delta\sigma}{\sigma} \approx 22\%$ (20%) $\frac{\Delta\lambda}{\lambda} \approx 19\%$ (17%)

19

conclusion

- a new general weighting method developed, ~10% improvement for coupling.
- better flavor tagging and lepton ID performance for DBD simulations and reconstruction, ~20% improvement for analysis.
- DBD full simulation: ZHH @ 500 GeV, P(e-,e+)=(-0.8,+0.3), 2 ab⁻¹, M(H)=120GeV, δσ/σ ~ 22%, δλ/λ ~ 40%.
- SGV fast simulation: vvHH @ 1 TeV, P(e-,e+)=(-0.8,+0.2), 2 ab⁻¹, M(H)=120GeV, δσ/σ ~ 20%, δλ/λ ~ 17%.
- similar result for M(H)=125GeV may be achieved by including HH-->bbWW* (Br. ~25%).
- jet-clustering could affect the performance very much, but it is very challenging to improve it in practice.

backup

motivation of Higgs self-coupling measurement

Higgs Potential:
$$V(\eta_H) = \frac{1}{2}m_H^2\eta_H^2 + \lambda v\eta_H^3 + \frac{1}{4}\lambda \eta_H^4$$

usical Higgs field mass term trilinear coupling M : $\lambda = \lambda_{SM} = \frac{m_H^2}{2v^2}$ $v \sim 246$ GeV V $V \sim 246$ GeV V $V \sim V$

- just the force that makes the Higgs boson condense in the vacuum (a new force, non-gauge interaction).
- direct determination of the Higgs potential.

ph

- accurate test of this coupling may reveal the extended nature of Higgs sector, like THDM and SUSY.
- difficult to measure at LHC for a light Higgs.

Measurement of the trilinear Higgs self-coupling @ ILC

• double Higgs-strahlung (dominate at lower energy)

extraction of Higgs self-coupling from the cross section of ZHH

effect of irreducible diagram

extraction of Higgs self-coupling from the cross section of vvHH

effect of irreducible diagram

$$\sigma = a\lambda^2 + b\lambda + c$$

$$\sigma(e^+e^- \rightarrow \nu\bar{\nu}HH)$$

result of LoI analysis

@ALCPG11

- focus on the ZHH @ 500 GeV, M(H) = 120 GeV.
- three decay modes of ZHH (Z-->ll, vv, qq, H-->bb) are investigated, based on ILD full simulation.
- neural-net methods are used to improve the background suppression.
- effects of different beam polarizations are checked.

P(e-,e+)=(-0.8,0.3)	e^+ -	$+e^- \rightarrow ZH$	$e^- \rightarrow ZHH$ $M(H) = 120 \text{GeV}$			
Energy (GeV)	Modes	signal		significance		
			background	excess (I)	measurement (II)	
500	$ZHH ightarrow (lar{l})(bar{b})(bar{b})$	6.4	6.7	2.1σ	1.7σ	
500	$ZHH ightarrow (u ar{ u}) (b ar{b}) (b ar{b})$	5.2	7.0	1.7σ	1.4σ	
500	ZHH ightarrow (qar q) (bar b) (bar b)	8.5	11.7	2.2σ	1.9σ	
		16.6	129	1.4σ	1.3σ	

 $\sigma_{ZHH} = 0.22 \pm 0.07$ fb

precision of cross section: **32**% precision of Higgs self-coupling: **57**%

idea of weighting

• different spectrum of M(HH) for ZHH from Higgs self-coupling and non-self-coupling

at first ...

- Would the mini-jet be pure enough?
- When would the mini-jet clustering appropriately stop?
 these can be tested supposing we can

combine the mini-jets perfectly

vvHH ---> vvbbbb

- using the realistic Duhram algorithm for the mini-jet clustering, stop when there are fixed number of mini-jets left.
- combine the mini-jets with cheated information, check the performance of Higgs reconstruction

(two Higgs masses are merged)

at first ...

