LED calibration and optical fiber distribution system

LCWS 2012, Arlington, 23/10/2012

Jiri Kvasnicka

Institute of Physics, Prague

QMB1 LED driver and notched fiber system
Single photon spectra & gain performance @ HBU
Amplitude scan and saturation

AHCAL calibration LED driver overview

- **CMB** special driver (IXIS IXLD02), "rectangular" pulse with reverse bias
 - Trapezoidal current pulse profile,
 - Pulse length and amplitude is configurable
 - Works well since 2005 in AHCAL 1m² physical prototype
- Integrated on the HBU discharge capacitor(s) through transistor
 - Low component usage allows each tile to have its LED
 - More sensitive to component selection, bigger spread in light yield – hard to control by a single common voltage

Quasi-Resonant

- 1A Current pulse shape is close to half-sine
- Light is distributed by notched fiber (see next slides)

QMB1

More info on QMB can be found:

http://www-hep2.fzu.cz/calice/files/20110915-Polak_I.CALICE_Heidelberg.pdf

Quasi resonant Main Board

- Modular system, 1 LED per board
- Operation mode:
 - DAQ + CAN bus control
 - stand-alone mode
- LVDS Trigger distribution system
- Variable amplitude, zero to maximum (~1Amp) smooth
- Electrical pulse width fixed to ~2.4 ns (UV or blue LED)
- Repetition rate up to 100 kHz
- Voltages and temperature monitoring
- Size of PCB: width 30mm, depth 140mm

Single power 15V, 65mA

Illuminated by Green laser

24 notches

Distribution of light: Notched fiber

- Plastic optical fiber 1 mm in diameter
- Light is emitted from the **notches**
- The **notch** is a special scratch to the fiber, which reflects the light to the opposite direction
- The size of the notch varies from the beginning to the end of the fiber to maintain homogeneity of the light emitted by the notches
- Performance will be shown in this talk

Jiri Kvasnicka, Institute of Physics, Prague

LCWS 2012, Arlington, Oct 23, 2012

2nd Test @ DESY (May 2012)

- Two HBU2 in one row, each had
 - 2 active SPIRoc2b ASICs (other 2 were not read out),
 - Assembled with 3 top rows of scintillators & SiPMs
- 3 notched test-fibers, 24 notches each.
- 3 QMB1 LED driver
- Different tiles & SiPMs on each HBU2 ('Old' and 'New' HBU) (see next slide)
- Low & High Gain running, goal was to measure the optical fiber
- Main results on next slides:
 - Single photon electron spectra
 - peak distance (gain)
 - Linearity & Amplitude scan
 - fiber results light distribution
- Thanks to Mathias Reinecke for effort to set up the 2nd HBU2
- Approx. 1/3 of final setup:
 - 3 notched fiber per 1 LED
 - Each fiber for 24 tiles
- Full test with 6 HBU in Dec 2012

High Gain pixel spectra (1 fiber)

SPS: FFT vs. Multi-Gauss

- Single peak distance measurement
 - Performing FFT & Gaussian fit to spectrum
- Advantage of FFT:
 - It's fast and gives
 - powerful even with very low statistic
 - fits have better success rate (100% vs. 94% at this case), even with worse SiPM (older tiles success rate 61%, compared to 21% with multigauss)
- Disadvantage of FFT:
 - FFT overshoots the gain distribution mean by 1-3%
- Multi-Gauss fit is more accurate (2x lower fit errors)

Thanks to Oskar Hartbrich

FFT overestimate compared to the multigauss fit histogram statistics on 33 tiles

Pixel Gain in HG mode

Pixel gain in HG mode (ASICs 3,2,1 & 0)

ASIC 3						ASIC 2						_	ASIC 1						ASIC 0						
26.0	25.0		17.0	29.3	29.6	0.0	36.7	-0.0	44.4	30.0	28.4		89.3	94.1	125.6	70.4	122.8	105.5	95.2	101.8	98.5	99.1	96.1		
0.0	26.3	27.1	28.9	23.8	26.5	26.0	18.0	27.3	0.0	31.9	32.6	32.1	80.5	72.0	96.7	62.6	91.0	93.7	88.4	86.4	84.4	87.5	71.2		
1.5	p.a.	27.1	22.0	36.8	28.0	27.5	16.7	31.3	0.0	13.3	33.3	112.0	43.7	101.3	64.2	38.2	90.7	86.0	92.3	40.1	91.9	83.9	48.0	-	-
		0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.02	0.0	8.0	0.0	9.0	0.0	0.0	0.0	0.0	aα	0.0	0:0		-
																							0.0		
																							0:0		

HBU OLD

- Pedestal shift occurred, probably issue of SpiRoc2b ASIC chips, new ASICs should cure this problem
- Some pathological cases (no holes, impossible fixing, no tile) for few channels
- Differences of 'old' and 'new' tile-SiPM batches are visible
 - ITEP: LY of tile & SiPM 15 vs. 12 pix./MIP
 - Gain 2.0 vs. 1.5 M, U_{bias} 43V vs. 47V (not good working point, delay setup)
 - Physical number of pixels should be same
- In average ~3 times higher pixel gain, assuming same light

intensity from notches

Jiri Kvasnicka, Institute of Physics, Prague

Saturation curves: row #1, HBU #0 &

Notch light homogeneity

- 2nd fiber still ok, 3rd problematic due to old tiles
- Error bars are estimation of worst case error
 - (1.2 bins for pedestal subtracted signal, 2% on the ASIC linearity, 1~3% based on FFT resolution, 1 additional bit on peak distance)
 - Does not include uncertainties of fiber laying, fixing and coupling

0

2322212019181716151413121110 9 8 7

notch index, direction from right to left

3210

4

6 5

Conclusion

Fiber-based calibration system tested in May at DESY

- 3 QMB1 with 3 LED & 24-notch fibers routed on PCB
- > Two HBUs connected in one row were provided
 - Readout was working first step to multi-HBU readout
 - Unfortunately not the same sort of tiles SiPMs
- Common characteristics measured: HG, LG, amplitude scan
- FFT is successfully applied on p.e. spectra to extract SiPM gain -> result from more point (with less accuracy)
- Wide range of light intensities provided
- Homogeneity of 24-notch fibers looks reasonable
- Upgrade of QMB1(v2.0) is foreseen in end of 2012
- Full test with 6 HBU2 in Dec 2012

Backup

Jiri Kvasnicka, Institute of Physics, Prague

Frame with 5 (and 1 spare) QMB1

Jiri Kvasnicka, Institute of Physics, Prague

TRIGGER (T-calib) LVDS distribution to QMB1

Jiri Kvasnicka, Institute of Physics, Prague

LCWS 2012, Arlington, Oct 23, 2012

High Gain pixel spectra, auto scaled

Notched fibers Semi-automatic tool

Frame with x-y stepper motors

Drill machine used as milling cutter to groove the notch

Now in operational debugging & SW development stage

Alu/PCB Template with moving scintillator tile

QMB1 linearity, amplitude scan

Standard LED pulses 3ns,

PWR measured by optical power meter ThorLabs PM100D

Output optical power vs V1 setting,

Differential Nonlinearity

Output optical power vs V1 setting, QMB1, optical fibre 7m in length, 1mm in diameter,

Saturation curves: procedure

Jiri Kvasnicka, Institute of Physics, Prague

LCWS 2012, Arlington, Oct 23, 2012

Saturation curves: All HBUs

Saturation curves: All rows

Notch light homogeneity - row 3

HBU response to the notched fibre

Light coupling

Test setup

