First analysis of DHCAL Data

José Repond Argonne National Laboratory

Linear Collider Workshop LCWS 2012 October 22 – 26, 2012 University of Texas at Arlington, Arlington, TX

The DHCAL at CERN

Resistive Plate Chambers RPCs

2-glass RPCs operated in avalanche mode

Digital Hadron Calorimeter DHCAL

54 layers (96 x 96 cm²) of RPCs with 1 x 1 cm² readout pads First large scale calorimeter with embedded front-end electronics Up to 497,664 readout channels (world record for calorimetry and RPC systems)

Transport to CERN

Built spring-damped transport fixture All RPCs survived intact

Installation at CERN

39 layers into Tungsten (1 cm \sim 3 X₀ plates) absorber structure 15 layers into Steel (2 cm and 10 cm plates) tail catcher

DHCAL Data Summary

Testbeam	Configuration	Muons ³	Secondary beam ³	Total ³
Fermilab ¹	DHCAL	6.9	9.3	16.2
	SiW ECAL + DHCAL	2.5	5.1	7.6
CERN ²	DHCAL	5.6	23.4	29.1
TOTAL		15.0	37.8	52.8

¹Contains a significant fraction of 'calibration events' ²Contains no 'calibration events' ³Numbers in millions

Data taking about x4 more efficient at CERN due to

- Longer days (24 versus 12 hours)
- Higher spill frequency (every 45 versus every 60 seconds)
- Longer spills (9.7 versus 3.9 seconds)
- More uniform extractions (no detectable microstructure)
- Machine downtime similar at CERN and FNAL

Beams at CERN

PS

Covers 1 – 10 GeV/c Mixture of pions, electrons, protons, (Kaons) Two Cerenkov counters for particle ID 1-3 400-ms-spills every 45 second (RPC rate capability OK) Data taking with ~500 triggers/spill

SPS

Covers 12 – 300 GeV/c Mostly set-up to either have electrons or pions (18 Pb foil) Two Cerenkov counters for particle ID 9.7-s-spills every 45 – 60 seconds RPC rate capability a problem (running with limited rate: 250 – 500 triggers/spill)

Tail Catcher Main Stack Drift Chambers Cerenkov counters Cerenkov counters Trigger counters

RPC rate limitations

~6 % loss of hits (in the following not yet corrected) Time constant ~ 1 second

General data selection and preparation I

Random noise

Measured with trigger-less runs Higher rate at ground connector (excluded from analysis) In general < 1 hit/event Noise has minimal effect on response Noise needs to be studied carefully for the measurement of shower shapes

Box events

Large or small fraction of electronic board fires Reason for boxes not entirely understood Fraction of boxes <1% for E < 100 GeV Significant fraction of boxes at E > 100GeV Developed algorithm to identify boxes Events with boxes rejected

General data selection and preparation II

Double hits

Duplicate hits with the same coordinate, but different time-stamps are eliminated This is a very small fraction of the hits

Time-stamp bins

Data are recorded in 7 time-stamp bins (each 100 ns) First two time-stamps are before the trigger (\rightarrow estimation of the noise level) Only hits in bins 3 and 4 included in analysis (\leftarrow reduction of possible noise)

Simulation of RPC response

RPC simulation

Spread of charge in pad plane using 2 exponentials 6 parameters to be tuned

Use clean muon events

Tune to average response per layer Able to tune 5 parameters Muons not sensitive to d_{cut}

(Describes local inefficiency for 2nd avalanche close to 1st one)

Use clean positron events

Tune last parameter: d_{cut}

Caveat

Tuning performed with Fermilab data Slightly different operating conditions at CERN

More details \rightarrow L. Xia's talk

Overview of CERN data sample

Polarity	Momentum	18 mm Pb absorber	No Pb absorber	Beam blocker	Total
Negative	1		540,660		540,660
	2		964,361		964,361
	3		1,006,185		1,006,185
	4		1,030,302		1,030,302
	5		1,185,235		1,185,235
	6		1,268,235		1,268,235
	7		1,546,744		1,546,744
	8		1,196,804		1,196,804
	9		2,044,224		2,044,224
	10		1,007,922		1,007,922
	12		300,666		300,666
	15	305,735			305,735
	20	465,904	438,356		904,260
	30	594,132	410,731		1,004,863
	40	510,736	303,020		813,756
	50	886,201			886,201
	60	497,739			497,739
	80	722,268			722,268
	100	526,323	64,658		590,981
	120	505,465			505,465
	180	123,448			123,448
	210	350,302			350,302
	240	283,554			283,554
	270	206,733			206,733
	300	436,133		704,141	1,140,274
	Total	6,414,673	13,308,103	704,141	20,426,917
Positive	4		1,137,898		1,137,898
	6		655,638		655,638
	8		527,234		527,234
	10		359,768		359,768
	60		10,125		10,125
	150	289,888	230,515		520,403
	180	303,917	211,482	4,920,679	5,436,078
	Total	593,805	3,132,660	4,920,679	8,647,144
Grand total		7,008,478	16,440,763	5,624,820	29,074,061

300 GeV pion showers

A few event variables

The interaction layer

Algorithm tuned with Monte Carlo events Defined as first of two consecutive layers with more than 3 hits

Longitudinal barycenter

$$BC = \frac{\sum_{i=0}^{53} i \cdot N_i}{\sum_{i=0}^{53} N_i}$$

Hit density R

$$R = \frac{\sum_{i=0}^{53} N_i}{\sum_{i=0}^{53} \operatorname{sgn}(N_i)}$$

53

with sgn(
$$N_i$$
) = 1 for N_i > 0, = 0 for N_i = 0

Event selection

General cut: 1 cluster in layer 0 with less than 12 hits **Particle selection**:

Particle	Cerenkov	BC	R	IL	N ₀	$\sum_{i=last-4}^{last} N_i$	$\sum_{i=0}^{last} N_i$
μ		>20	<3.0	-		>0	>10
e±	C ₁ ·C ₂ =1	<8	>4.0 for E>12 GeV	-	>4 for E>12 GeV	-	-
π.	C ₁ +C ₂ =0	-	>2.0 - 5.0	>2 for E>3 GeV		-	-
π+	$C_1=0 \text{ and } C_2=1$ (p ≤ 10 GeV/c) $C_1 \cdot C_2=1$ (p > 10 GeV/c)	-	>2.0 - 5.0	>2 for E>3 GeV		-	-
р	C ₁ +C ₂ =0	-	>2.0 - 5.0			-	

- BC ... Longitudinal barycenter
- R ... Average number of hits per active layer
- IL ... Interaction layer
- N₀... Hits in layer 0

Spectra at -2 GeV/c

$$x < \mu$$
 $\sigma = \sigma_0$
 $x \ge \mu$ $\sigma = \sigma_0 + a(x - \mu)$

Electron selection

Through-going muon selection

Pion selection

Double peak structure due to 2 GeV/c muons and pions

Both range out in the DHCAL

2 component fit adequate(muon response sensitive to distribution of angle of incidence)(pion response adjusted by 10%)

Response at the PS (1 - 10 GeV)

Fluctuations in muon peak

Data not yet calibrated

Response non-linear

Data fit empirically with αE^{β} $\beta = 0.90$ (hadrons), 0.78 (electrons)

W-DHCAL with 1 x 1 cm²

Highly over-compensating (smaller pads would increase the electron response more than the hadron response)

Remember: W-AHCAL is compensating!

Resolution at the PS (1 - 10 GeV)

Resolutions corrected for non-linear response

$$\frac{dE}{E} \sim \frac{1}{\beta} \frac{dN}{N}$$

Data fit with quadratic sum of constant and stochastic term

$$\frac{\sigma}{E} = c \oplus \frac{\alpha}{\sqrt{E}}$$

Particle	α	С
Pions	(68.0±0.4%	(5.4±0.7)%
Electrons	(29.4±0.3)%	16.6±0.3)%

(No systematics yet)

Comparison with Simulation – SPS energies

Data

Uncalibrated Tails toward lower N_{hit}

Simulation

Rescaled to match peaks Shape surprisingly well reproduced

Response at the SPS (12 – 300 GeV)

Fluctuations in muon peak

Data not yet calibrated

Response non-linear

Data fit empirically with αE^{β} $\beta = 0.85$ (hadrons), 0.70 (electrons)

W-DHCAL with 1 x 1 cm²

Highly over-compensating (smaller pads would increase the electron response more than the hadron response)

Conclusions

W-DHCAL: Great data set with 53 Million events spanning 1 – 300 GeV in energy

Detailed systematic studies of the data have begun

 \rightarrow There is a lot to do and understand

Presented **preliminary look** at the W-DHCAL data

• Response saturates both at the PS (1 – 10 GeV) and the SPS (12 – 300 GeV)

 \rightarrow Smaller readout pads needed for Tungsten absorbers

- Approximately 50% more hits with Steel absorbers
- Simulations start to look like the data
 - \rightarrow Major features of data understood