

Status of the Micromegas SDHCAL project

LCWS, Arlington, October 24th 2012

A. White, University of Texas, Arlington on behalf of the LC group of LAPP, Annecy

Overview

- Introduction
- 1x1 m² Micromegas chamber
- Test beam activity
 - Results in CALICE SDHCAL
 - November 2012 tests
- Protection against discharges
- Conclusion

Micromegas SDHCAL project

Particle Flow calorimetry at a LC

Calorimeter granularity more important than its single particle energy resolution \rightarrow sampling gaseous hadron calorimeter with 1x1 cm² cells and 8 mm thin active layers

The 2-bit readout should allow to correct for the saturation in the dense part of showers and thus to improve the energy resolution (\rightarrow lower constant term).

Advantage of Micromegas (and GEM) over RPCs

<u>No space charge effects</u> \rightarrow High rate capability & proportionality (better use of semi-digital information) Simple gas mixtures (Ar/CO2), no ageing, low operating voltages (< kV), low hit multiplicity (~1.2)

Bulk Micromegas

Our Micromegas detectors are fabricated using the Bulk technology The fabrication consists in the lamination of a steel woven mesh and photo-sensitive layers on a PCB

Geometry

Detector : 128 μ m amplification gap, 3 mm drift gap Woven mesh : 80 μ m pitch, steel wire diameter 20 μ m Pillars : 300 μ m diameter, 2 mm pitch Pads : square pattern, 1 cm pitch

Average number of primary electrons of ~ 30 e-, Gas gain up to a few 10^4 , MIP charge of 5-20 fC in 150 ns

2 GeV e- profile in a virtual ECAL, C. Adloff 2010 JINST 5 P01013

Micromegas boards (ASU)

The basic building block of our large area Micromegas chamber is an <u>8 layer PCB of 32x48 cm²</u>. It is equipped with 24 ASICs, 1536 pads and a Bulk mesh It is called an <u>Active Sensor Unit</u> (ASU)

ASU can be chained thanks to flexible inter-connections They are also equipped with spark protections (diodes) They are read out by 2 boards: DIF & interDIF (cf. photograph)

32x48 pads of 1 cm² on mesh side

24 ASIC + spark protections on back side

Front-end electronics

Following the ILC beam time structure, the front-end electronics:	
- is off between bunch trains	\rightarrow <u>power-pulsing</u> of analogue part;
- is on during trains	\rightarrow <u>self-triggering</u> capability + <u>memory</u> with 200 ns timestamping;

The MICROROC is a 64 channel chip developed with LAL/Omega

It is well suited for both Micromegas and GEMs \rightarrow Will be used with THGEM during Nov. test beam

ASU characterisation

Operation inside a gas chamber: ⁵⁵Fe quanta peaks above <u>flat (cosmic) background: no noise!</u>

Design of the 1 m² chamber

The 1 m² chamber consists of 3 slabs with DIF + interDIF + ASU + ASU

This design introduces very little dead zone (below 2%) and is fully scalable to larger sizes

The drift gap is defined by small spacers and a frame

The final chamber thickness is 9 mm

Performance to MIPs

A high efficiency to MIPs is reached at a gas gain of 3000 (390 V) Due to the small spread of charge in the Micromegas, the hit multiplicity is between 1.1-1.2 at 90° incidence

The efficiency variation over 287 ASIC (8x8 cm² regions) is 2% RMS, for an average of 96% \rightarrow Very good control of the chamber dimension and thresholds

Performance to hadrons

Hadron showers contain heavily ionising particles (& a few MIPs) \rightarrow what is the necessary gas gain? From the distribution of the number of hits at various voltages... probably less than 1000! Indeed, the tails of the distributions at 350 V and 375 V are very similar.

Performance inside CALICE/SDHCAL

The SDHCAL is a 50 layers sampling calorimeter (~ 6 λ_{int}) of steel absorbers and 1 m² active layers During a test beam in May, the SDHCAL was equipped with 48 RPCs and 2 Micromegas All detectors were all read out by a common DAQ (cf. next slide)

LAPP contributions to the SDHCAL

LAPP designed and programmed (firmware) the <u>Detector Interface boards</u> (DIF) that equip the 1x1 m² RPCs and Micromegas (3 DIFs / chamber)

In November 2011, it was decided to postpone the development of the CALICE DAQ in favour of an <u>"intermediate" DAQ</u> that would be operational for the 2012 test beams of the SDHCAL.

LAPP developed the firmware for the DIF & DCC boards.

The "intermediate" DAQ was fully functional for the first test beam in May 2012

Performance inside CALICE/SDHCAL

The distributions measured in the Micromegas chambers are well reproduced by MC simulation

Average Nhit versus pion energy

Future plans inside CALICE/SDHCAL (1/2)

Novembre 2012 test beam inside the SDHCAL The calorimeter will be equipped with 46 RPCs and 4 Micromegas at layers 10-20-35-50

Identify shower start z_0 with RPCs and measure Nhit in Micromegas chambers w.r.t. z_0

In this way the shower longitudinal profile w.r.t. z_0 can be obtained

Proof of principle demonstrated with SDHCAL May data using RPCs only We used <u>3 chambers at layers 10, 25 & 40</u> and compared with the results with 45 chambers

Future plans inside CALICE/SDHCAL (2/2)

From a fit of the longitudinal profile:

Integral yields the average number of hits, the leakage can be calculated and corrected for

Measuring the profiles at various pion energies will lead to the <u>response of a virtual 50 layer Micromegas SDHCAL</u> Maybe we can also learn about the semi-digital readout...

Spark protection in Large Area Micromegas

SPLAM project within CEA/IRFU and CNRS/IN2P3 laboratories to <u>investigate different protection strategies</u> against gas discharges in Micromegas detectors.

Eventually: reduce PCB cost by replacing the (so far efficient) protection diodes by a <u>resistive layer</u> on the anode surface

Maximum voltage drop on pads during a spark with a resistive configuration

Simulations with different configurations:

- standard (bare anode pads);
- resistive + dielectric layer on pads.

Resistive VS standard config.

 \rightarrow max. voltage drop reduced from -400 to -30 V

2013: fabricate and test prototypes based on our current ASU design (32x48 cm²)

Conclusion and future plans

- <u>Micromegas chambers of 1 m² are a nice piece of R&D</u>
 - Excellent performance so far
 - Exciting measurement to come inside GRPC-SDHCAL during November test beam We are getting organised with our RPCs colleagues from IN2P3/IPNL
 - 1) Start as tail catcher during 1st week
 - 2) Insertion inside the calorimeter at fixed positions during 2nd week
- <u>During LHC shut-down</u>
 - Hopefully, lot of data to keep us busy on analysis/publication
 - Continue R&D: resistive Micromegas, thinner chambers with smaller pads (possibly ECAL)
- With the discovery of a Higgs-like particle at CERN and Japan interest on hosting a LC
 - Reinforce efforts on physics analyses within LAPP LC group