

Silicon-Tungsten EM calorimeter

Rémi Cornat Laboratoire Leprince-Ringuet Ecole Polytechnique – IN2P3/CNRS On behalf of the SiW-ECAL ILD project* within CALICE coll.

From this...

CMS Experiment at the LHC. CERN Date Recorded: 2009-12-06 07:18 GMT Run/Event: 123596 / 6732761 Candidate Dijet Collision Event

to this :

A mix of technologies validated with prototypes

First prototype (2006) : validation of physics perf.

First generation prototype and tested on beam 2006-2008

30 layers - ~10000 channels

Mechanical structure: carbon fibre composite, incorporating tungsten layers

Standard printed circuit slabs hold silicon sensors & electronics (outside detection area)

Calorimeters for ILC

ECAL :

~24 X0, 20 cm thick ~2500 m² active detectors ~**100M readout channels**

Reduce dead material, calorimeters inside coil,

Extreme compactness

Work with specific beam structure ILC: 5Hz trains each of 3k bunches @ 340 ns low occupancy, low noise : S/N >10

Technological prototype (2011) : Proof of feasibility

 \rightarrow embedded "system on chip" electronics, HCAL \rightarrow extremely low power consumption typ. 25 μ W/ch, \rightarrow wide sensors (81 cm², pure silicon), \rightarrow large composite mechanical structure, ECAL \rightarrow readout technology insensitive to ~4T field, \rightarrow integrated DAQ system Goal: 1 instrumented tower (40k channels, 20 cm² crossection) = 5000 (4200) Module ECAL 210 1700 (1500)

Large mechanical structure done

Each layer build separately then "coked" together. Deeply simulated : mechanical constraints, thermal behavior Next step : wider assembly with 5 columns

> Tungsten plates wrapped into carbon fibre: 15 layers 7 mm tick detector slab slided into alveola

Detector slab : "extreme" design

Compact assembly of 2 layers of 1 to 8 Active Sensor Units (ASU)

1 ASU = 1 kapton (HV bias for PIN diodes)

- + 1 layer PIN diodes
- + 1 PCB with microchips embeded
- + 1 thermal drain (copper)

PCB is critical : 1 mm tick, 8 layers, 1% flatness , chips bounded *into*

PIN diode matrices design

The simplest design to control the cost

- Few thousands of m² needed for ILD
- Glued on PCB : Floating Guard Rings

Drawbacks :

- Large dead zone at the edges (>1 mm)
- Crosstalk with GR

R&D in close collaboration with HPK

- Split GR and/or complete removal of GR
- Laser dicing : gain a factor 2 on dead zone
- Smaller size abutted matrices may improve yield

Also tried edgeless techno. from VTT

P++ implants (pixels)

HPK : 9x9 cm², 256 pixels

SKIROC chip

Silicon Kalorimeter Integrated Read Out Chip

- Technology SiGe 0.35µm AMS.
- Production batch received Q3'10
- 64 channels, variable gain charge amp, 12-bit ADC, digital logic
- Power-pulsed \rightarrow 25 μ W/channel

Power pulsing

- Variable current consumption according to state
- 1 slab : 0 to 10 Amps pulses
 of 1 ms at 5 Hz

Detector slab : conservative design

Same concepts but with chips in package

- BGA design requires additional 3 mm in SLAB thickness
- Ultra thin BGA under study : promising
 - Feasibility of lidframe : done
 - Impact on Xtalk, noise : to be studied
 - Length of pixel-chip traces divided by 2-3 w.r.t. PQFP design

Advanced package technologies

- Thicknesses as low as 0.5mm
- Ball bonded Flip chip
- Allow efficient routing of pcb traces and digital/analog separation : longest analog trace is ~2 cm

(today prototype are build using PQFP to ease debugging)

Long SLAB assembly

Up to 9 equipped PCBs interconnected to make detector slab

Electrical and mechanical connection made thanks to Kapton connecting cable

Technique under investigation

- Soldering with Flat Cable (Kapton)
- Easy for mass production

Full size kapton for interconnects

18 cm, 4 slots of 36 pins each

Developing a leakless water cooling system

Total ECAL power dissipation O(10 kW) even at 25 μW/ch Need active cooling system (cold water pipe + radiator) Limit : temperature differences within ECAL

heat transfer to neighboring detectors

Cooling tests in demonstrator module

LCWS conference - Oct. 2012 - Arlington - remi.cornat@in2p3.fr

DAQ : hardware and software

Scalable : Computing network architecture Standard : Giga-Ethernet, Serial 8b10B Backplane-less

Compact

"one cable for everything"

Data Acquisition, Timing, Slow control

Flexible and highly modular software

Multiple output formats

Files (offline) Shared memory (online H. Perf) TCPSockets (remote online) Subsampling (real time processing)

Used for test beams

Assembly of first SLABs

Most of technologies described above used to build first SLABs

First approach of an assembly procedure Toward automation and indistrialization

Simplified SLABS including 1 ASU with 4 SKIROCs in PQF package 1 Si Wafer (256 chn)

Succesfuly put into structure

LCWS conference - Oct. 2012 - Arlington - remi.cornat@in2p3.fr

First 6 SLABS tested @DESY (July'12)

See next talk

Summary

CALICE Si-W ECAL technologies with emphasis on

- Low power FE electronics incorporated in detector volume
- Integration (Structure, DAQ, cooling, services)
- Sensor improvements & industrialization

Step by step prototyping allow tracking the best feasibility/cost compromise

Optimization of overall design is based on accurate physics simulations

- Number of layers
- Number of pixels
- Dead area
- Allowed material

Now have a good understanding of how to build a complete ECAL with affordable technologies