

LHCphenOnet

Massachusetts Institute of Technology

THEORETICAL PROGRESS ON EVENT SHAPES AND FITS TO α_s

Vicent Mateu MIT

International Workshop on Future Linear Colliders 2012 Arlington, Texas, USA 25 - 10 -2012

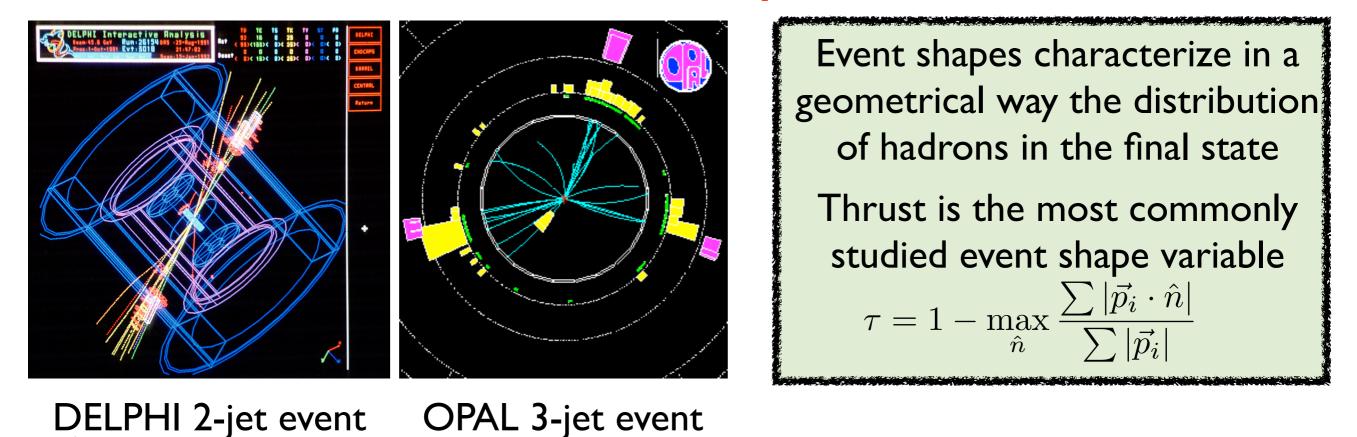
A biased perspective from an Effective Field Theorist...

OUTLINE

- Introduction
- Fixed order computations
- Resummation
- Power corrections
- Nonsingular terms and mass effects
- Comparison to data and fits
- Summary

INTRODUCTION

Event Shapes $e^+e^- \rightarrow \text{jets}$



They are theoretically **more friendly than a Jet algorithm**

dijet $\tau = 0$ \checkmark

spherical $\tau = \frac{1}{2}$

Continuous transition from 2-jet to 3-jet, ... multi-jet events

• Thrust
$$au = 1 - \max_{\vec{n}} \frac{\sum_i |\vec{p_i} \cdot \vec{n}|}{\sum |\vec{p_i}|}$$
 [E. Farhi]

• Angularities
$$au_{(a)} = rac{1}{Q} \sum_{i} E_i (\sin \theta_i)^a (1 - |\cos \theta_i|)^{1-a}$$
 [Berger, Kucs, Sterman]

• Jet Masses
$$\rho_{\pm} = \frac{1}{Q^2} \Big(\sum_{i \in \pm} p_i\Big)^2$$

• Jet Broadening
$$B = \frac{\sum_{i} |\vec{p_i} \times \vec{n}|}{\sum_{i} |\vec{p_i}|}$$
 [Catani, Turnock, Webber]

• **C-parameter**
$$C = \frac{3}{2} \frac{\sum_{i,j} |\vec{p_i}| |\vec{p_j}| \sin^2(\theta_{ij})}{(\sum_i |\vec{p_i}|)^2}$$

[Parisi] [Donoghue, Low, Pi]

• Thrust
$$au = 1 - \max_{\vec{n}} \frac{\sum_i |\vec{p_i} \cdot \vec{n}|}{\sum |\vec{p_i}|}$$

C

• Angularities
$$\tau_{(a)} = \frac{1}{Q} \sum_{i} E_i (\sin \theta_i)^a (1 - |\cos \theta_i|)^{1-\alpha}$$

• Jet Masses

$$p_{\pm} = \frac{1}{Q^2} \Big(\sum_{i \in \pm} p_i\Big)^2$$

• Jet Broadening
$$B = \frac{2}{3}$$

$$B = \frac{\sum_{i} |\vec{p_i} \times \vec{n}|}{\sum_{i} |\vec{p_i}|}$$

C-parameter

$$= \frac{3}{2} \frac{\sum_{i,j} |\vec{p_i}| |\vec{p_j}| \sin^2(\theta_{ij})}{(\sum_i |\vec{p_i}|)^2}$$

2-jet event shapes

 $e \rightarrow 0$

dijet configuration

• Thrust
$$\tau = 1 - \max_{\vec{n}} \frac{\sum_i |\vec{p_i} \cdot \vec{n}|}{\sum |\vec{p_i}|}$$

• Angularities
$$\tau_{(a)} = \frac{1}{Q} \sum_{i} E_i (\sin \theta_i)^a (1 - |\cos \theta_i|)^{1-a}$$

Depend on a continuous parameter

Jet Masses
$$\rho_{\pm} = \frac{1}{Q^2} \Big(\sum_{i \in \pm} p_i\Big)^2$$

• Jet Broadening
$$B = \frac{\sum_i |\vec{p_i} \times \vec{n}|}{\sum_i |\vec{p_i}|}$$

• **C-parameter**
$$C = \frac{3}{2} \frac{\sum_{i,j} |\vec{p_i}| |\vec{p_j}| \sin^2(\theta_{ij})}{(\sum_i |\vec{p_i}|)^2}$$

• Thrust
$$au = 1 - \max_{\vec{n}} \frac{\sum_i |\vec{p_i} \cdot \vec{n}|}{\sum |\vec{p_i}|}$$

• Angularities
$$\tau_{(a)} = \frac{1}{Q} \sum_{i} E_i (\sin \theta_i)^a (1 - |\cos \theta_i|)^{1-a}$$

• Jet Masses
$$\rho_{\pm} = \frac{1}{Q^2} \Big(\sum_{i \in \pm} p_i\Big)^2$$

• Jet Broadening
$$B = \frac{\sum_i |\vec{p_i} \times \vec{n}|}{\sum_i |\vec{p_i}|}$$

Recoil sensitive

C-parameter
$$C = \frac{3}{2} \frac{\sum_{i,j} |\vec{p_i}| |\vec{p_j}| \sin^2(\theta_{ij})}{(\sum_i |\vec{p_i}|)^2}$$

• Thrust
$$au = 1 - \max_{\vec{n}} \frac{\sum_i |\vec{p_i} \cdot \vec{n}|}{\sum |\vec{p_i}|}$$

• Angularities
$$\tau_{(a)} = \frac{1}{Q} \sum_{i} E_i (\sin \theta_i)^a (1 - |\cos \theta_i|)^{1-a}$$

• Jet Masses

$$p_{\pm} = \frac{1}{Q^2} \Big(\sum_{i \in \pm} p_i\Big)^2$$

• Jet Broadening $B = \frac{2}{2}$

$$B = \frac{\sum_{i} |\vec{p_i} \times \vec{n}|}{\sum_{i} |\vec{p_i}|}$$

• C-parameter

$$C = \frac{3}{2} \frac{\sum_{i,j} |\vec{p}_i| |\vec{p}_j| \sin^2(\theta_{ij})}{(\sum_i |\vec{p}_i|)^2}$$

Necessitate minimization procedure

Other event shapes include

Thrust major Thrust minor Spherocity D-parameter Energy-Energy correlation y₂₃

Other event shapes include

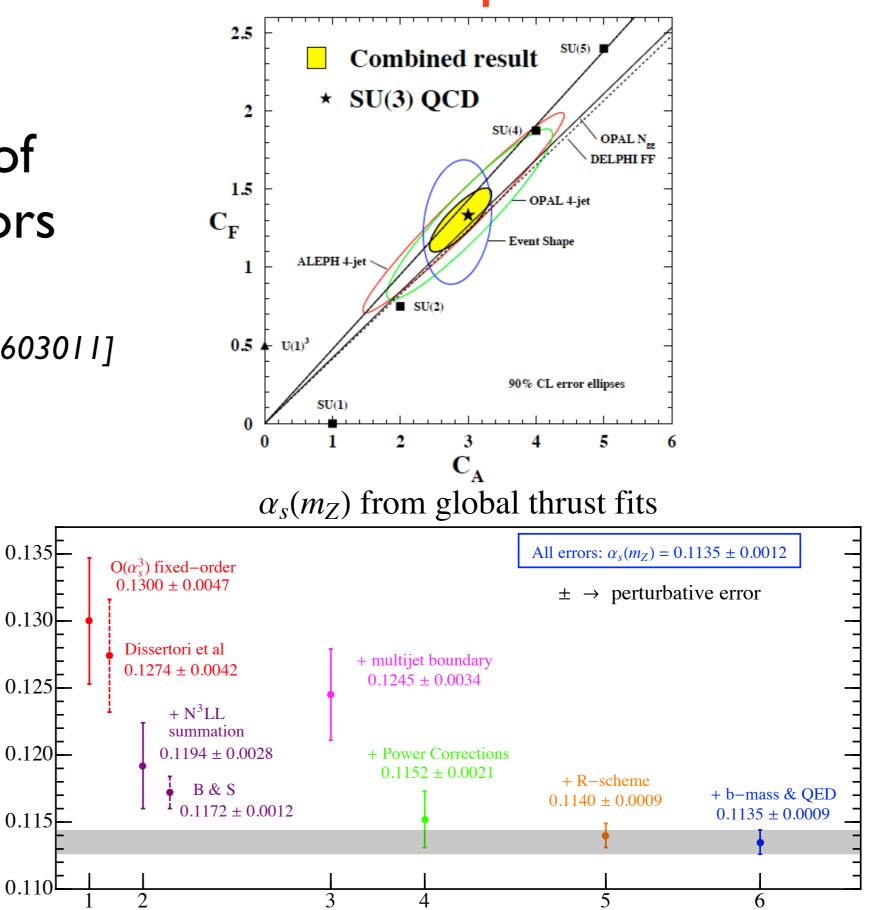
```
Thrust major
Thrust minor
Spherocity
D-parameter
Energy-Energy correlation
y<sub>23</sub>
```

Applications of event shapes

Measurements of QCD color factors

figure taken from [Kluth hep-ex/0603011]

 $\alpha_s(m_Z)$



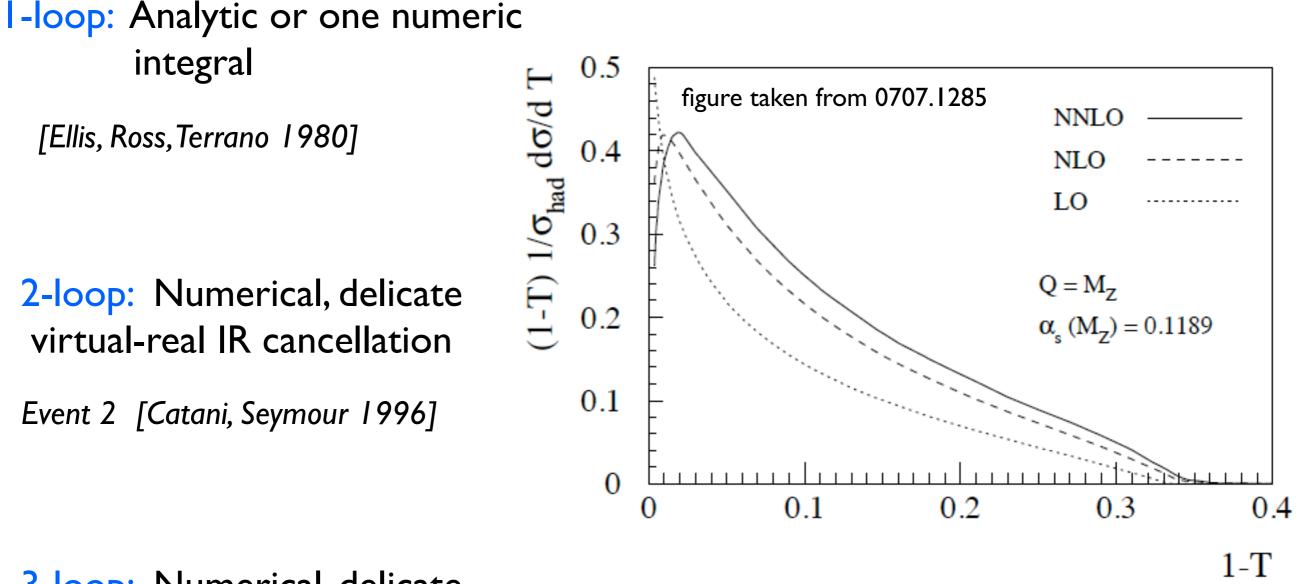
Determination of $\alpha_s(m_Z)$

[Abbate, Fickinger, VM, Stewart]

arXiv:1006.3080 arXiv:1204.5746

FIXED ORDER PREDICTIONS

Fixed order predictions



3-loop: Numerical, delicate virtual-real IR cancellation

Mercutio [Weinzierl 2008] EERAD 3 [Gehrmann-De Ridder, Gehrmann, Glover, Heinrich 2007]

RESUMMATION

Resummation or large logarithms

Event shapes are not inclusive quantities

Incomplete IR cancellation generate large logs at small e

$$\frac{1}{\sigma_0} \frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = -\frac{2\alpha_s}{3\pi} \frac{1}{\tau} \Big(3 + 4\lg\tau + \dots\Big)$$

Invalidate perturbative expression for small au

One has to reorganize the entire expansion by considering $\alpha_s \lg(e) \sim \mathcal{O}(1)$

Counting more clear in the exponent of cumulant distribution

$$\Sigma(e_c) \equiv \int_0^{e_c} \mathrm{d}e \frac{1}{\sigma_0} \frac{\mathrm{d}\sigma}{\mathrm{d}e}$$

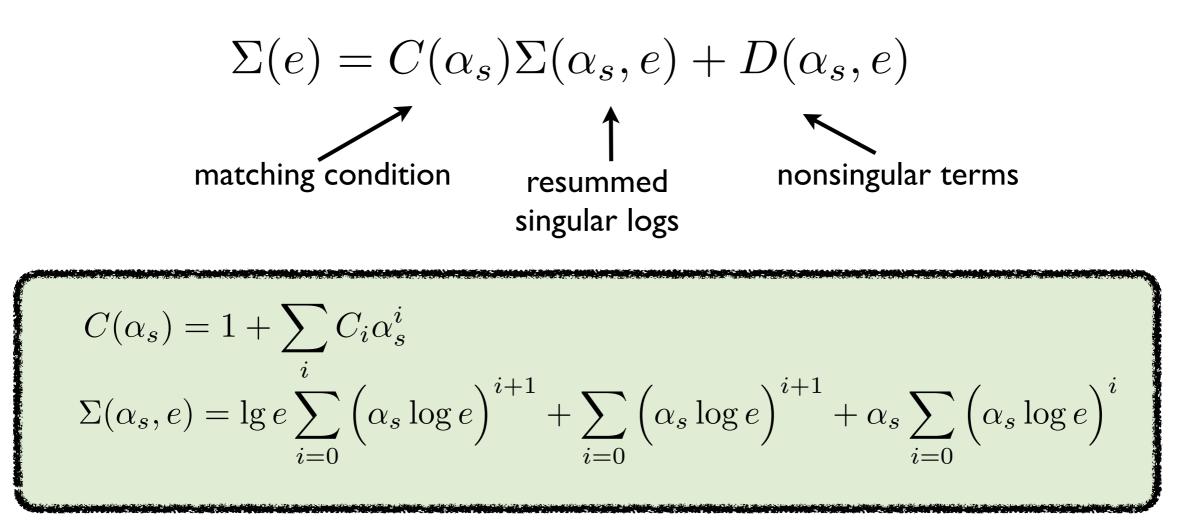
$$\log \Sigma(e_c) = \lg e \sum_{i=0} \left(\alpha_s \log e \right)^{i+1} + \sum_{i=0} \left(\alpha_s \log e \right)^{i+1} + \alpha_s \sum_{i=0} \left(\alpha_s \log e \right)^i + \alpha_s^2 \sum_{i=0} \left(\alpha_s \log e \right)^i$$
LL NLL NNLL NNLL N³LL

+ terms which are not singular as $e \rightarrow 0$

Classic approach to resummation

Based on coherent branching formalism

[Catani, Trentadue Turnock, Webber]



Except for EEC, classic resummation at most NLL

CAESAR, automated tool for semianalitic NLL resummation

[Banfi, Salam, Zanderighi, 2003-04]

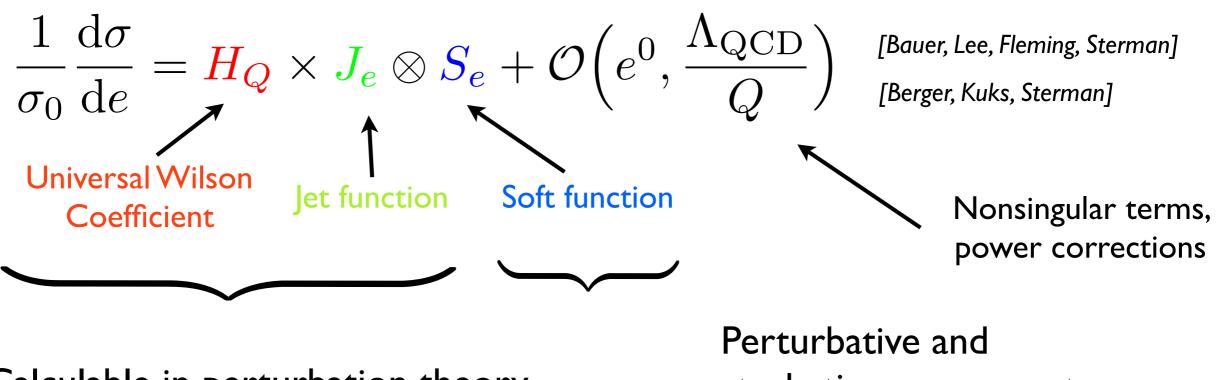
Effective Field Theory Approach

(Will focus on SCET but CSS is equivalent)

Soft-Collinear Effective Theory (SCET)

[Bauer, Fleming, Luke] [Bauer, Fleming, Pirjol, Stewart] Designed to study highly energetic particles far off-shell Initially used for B decays, also useful for jet physics Modal theory (fields are decomposed in sub-fields) Complicated non-local theory (plenty of Wilson lines) Easy to proof factorization, resummation via RGE

Factorization theorem

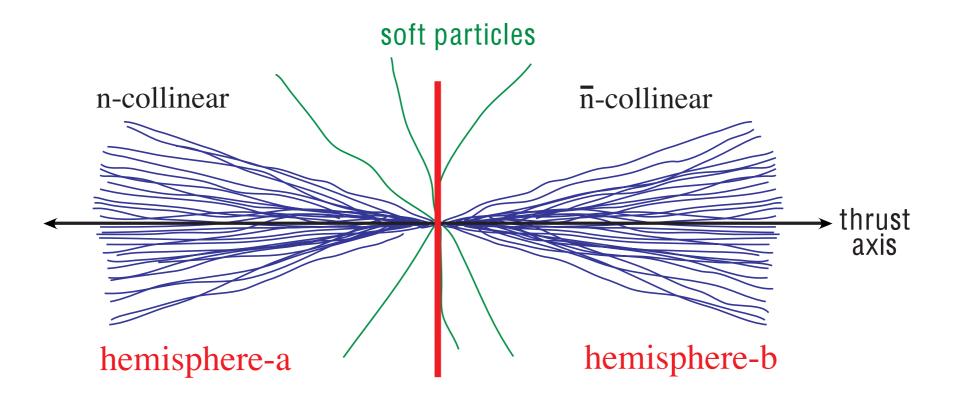


Calculable in perturbation theory

nonperturbative components

$\begin{array}{l} \mbox{Effective Field Theory Approach} & \mbox{(Will focus on SCET} \\ \mbox{tut CSS is equivalent)} \\ \hline \frac{1}{\sigma_0} \frac{\mathrm{d}\sigma}{\mathrm{d}e} = H_Q \times J_e \otimes S_e + \mathcal{O}\left(e^0, \frac{\Lambda_{\mathrm{QCD}}}{Q}\right) & \mbox{[Bauer, Lee, Fleming, Sterman]} \\ \mbox{[Berger, Kuks, Sterman]} \end{array}$

Theorem only valid for non-recoil sensitive event shapes: exclude jet broadening



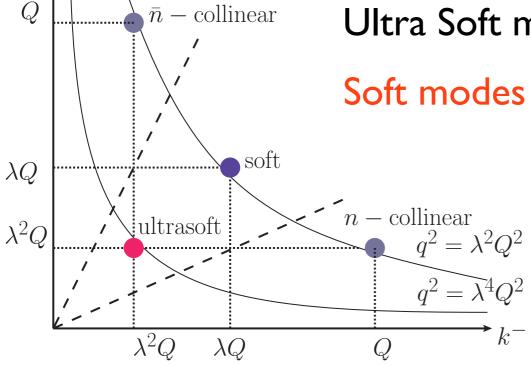
Resummation of large logs is achieved through renormalization group evolution for each separate matrix element

$\begin{array}{l} \mbox{Effective Field Theory Approach} & \mbox{(Will focus on SCET but CSS is equivalent)} \\ \hline \frac{1}{\sigma_0} \frac{\mathrm{d}\sigma}{\mathrm{d}e} = H_Q \times J_e \otimes S_e + \mathcal{O}\left(e^0, \frac{\Lambda_{\mathrm{QCD}}}{Q}\right) & \mbox{[Bauer, Lee, Fleming, Sterman]} \\ \mbox{[Berger, Kuks, Sterman]} \end{array}$

Theorem only valid for non-recoil sensitive event shapes: exclude jet broadening

Hard modes integrated out, Hard function
Collinear modes make up Jet function
Ultra Soft modes make up Soft function
Soft modes do not play a role in SCET_I

 $q^{2} \sim Q^{2}$ $q^{2} \sim Q^{2} \lambda^{2}$ $q^{2} \sim Q^{2} \lambda^{4}$ $q^{2} \sim Q^{2} \lambda^{2}$



 k^+

(Will focus on SCET **Effective Field Theory Approach** but CSS is equivalent) $\frac{1}{\sigma_0} \frac{\mathrm{d}\sigma}{\mathrm{d}e} = H_Q \times J_e \otimes S_e + \mathcal{O}\left(e^0, \frac{\Lambda_{\mathrm{QCD}}}{\mathcal{O}}\right)$ [Bauer, Lee, Fleming, Sterman] [Berger, Kuks, Sterman]

Theorem only valid for non-recoil sensitive event shapes: exclude jet broadening

Purely perturbative

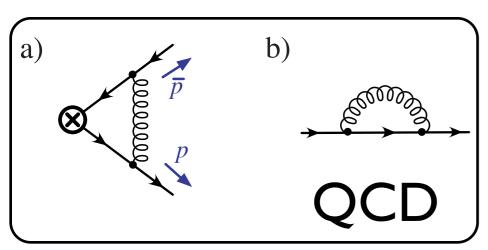
Matching SCET to QCD

Same for all event shapes

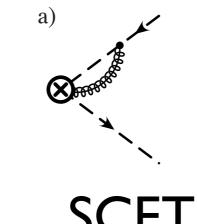
Known at 3 loops [Baikov et at]

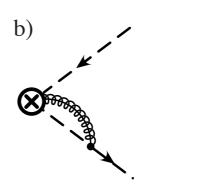
Anomalous dimension known at 3-loops

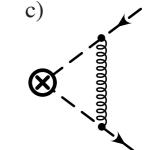
[Moch et al] [Lee et al]

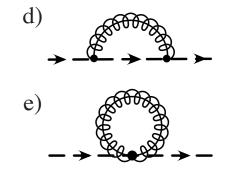


 H_{O}









$\begin{array}{l} \mbox{Effective Field Theory Approach} & \mbox{(Will focus on SCET but CSS is equivalent)} \\ \\ \mbox{$\frac{1}{\sigma_0}\frac{\mathrm{d}\sigma}{\mathrm{d}e}=H_Q\times J_e\otimes S_e+\mathcal{O}\left(e^0,\frac{\Lambda_{\rm QCD}}{Q}\right)$ [Bauer, Lee, Fleming, Sterman]} \\ \\ \mbox{[Berger, Kuks, Sterman]} \end{array}$

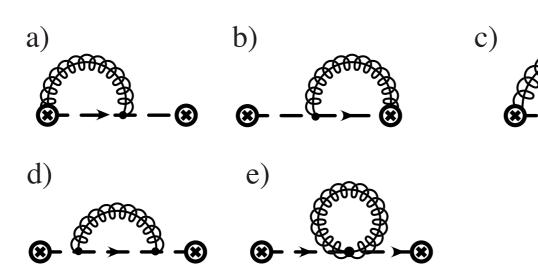
Theorem only valid for non-recoil sensitive event shapes: exclude jet broadening

Purely perturbative

Evolution of produced jets

Same for thrust, Jet masses, C-parameter [Becher & Neubert] Known at 2 loops, logs known at 3-loops [Moch, Vermaressen & Vogt] Anomalous dimension known at 3-loops

Except angularities, EEC



$\begin{array}{l} \mbox{Effective Field Theory Approach} & \mbox{(Will focus on SCET but CSS is equivalent)} \\ \\ \mbox{$\frac{1}{\sigma_0}\frac{\mathrm{d}\sigma}{\mathrm{d}e} = H_Q \times J_e \otimes S_e + \mathcal{O}\left(e^0, \frac{\Lambda_{\mathrm{QCD}}}{Q}\right)}_{G} & \mbox{[Bauer, Lee, Fleming, Sterman]} \\ \end{array}$

Theorem only valid for non-recoil sensitive event shapes: exclude jet broadening

Can factorize perturbative effects

Soft radiation effects

Same for thrust and Jet masses [Hornig et al][Monni et al] [Kelley et al] Known at 2 loops, logs known at 3-loops ang

Anomalous dimension known at 3-loops

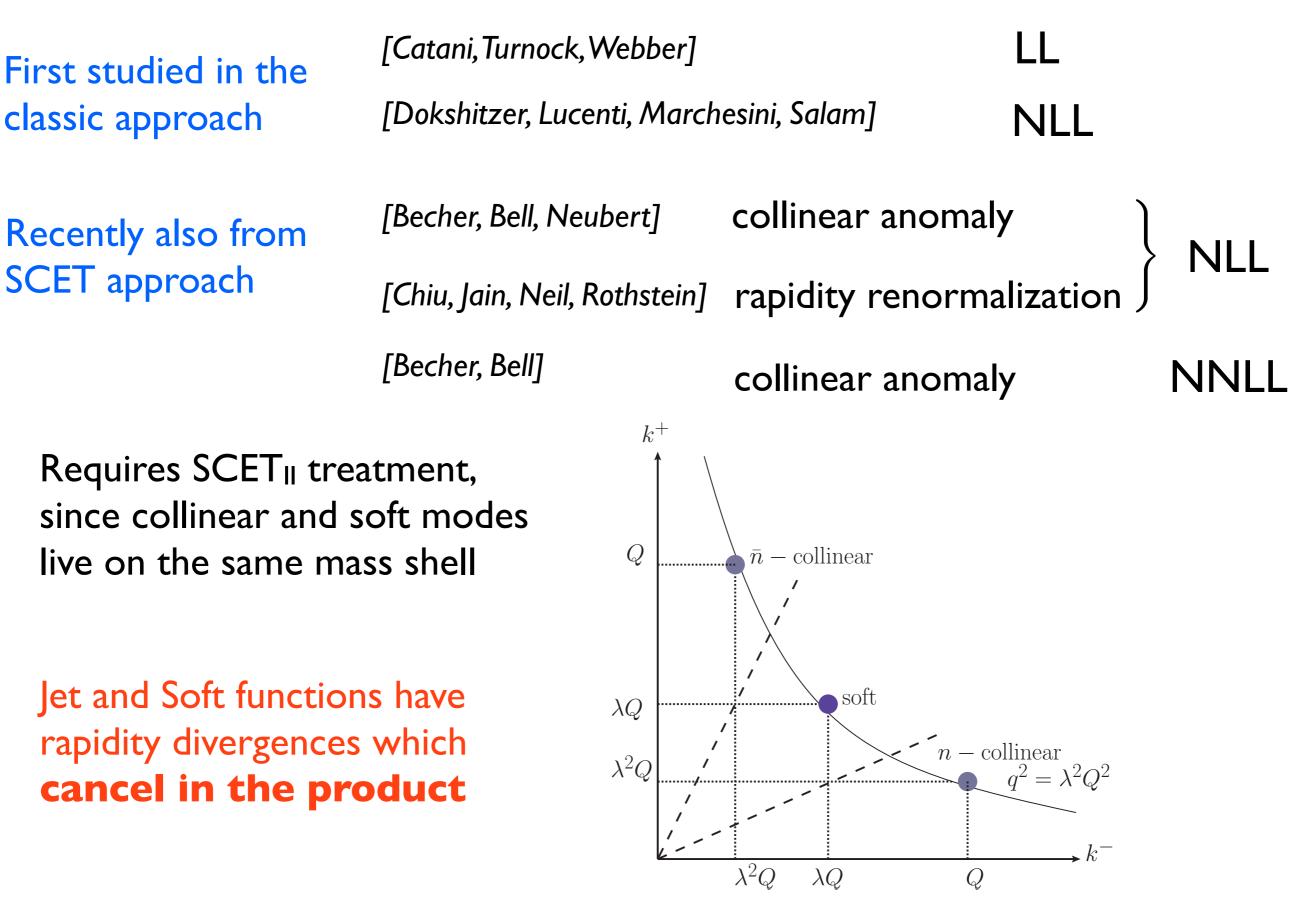
Except angularities, C-parameter, EEC

 $S_e = \hat{S}_e \otimes F_e$

 S_e

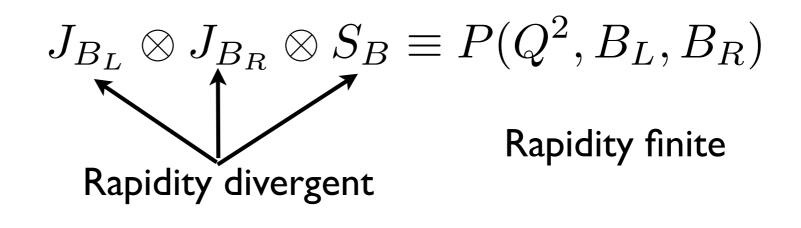
perturbative **perturbative** & nonperturbative [VM,Thaler, Stewart]

Jet Broadening



Jet Broadening

[Becher, Bell, Neubert]



Q-dependence in P exponentiates

This exponentiation sums up large singular logs

[Chiu, Jain, Neil, Rothstein]

$$W_n = \sum_{\text{perms}} \exp\left[-\frac{gw^2}{\bar{n}\cdot\mathcal{P}}\frac{|\bar{n}\cdot\mathcal{P}_g|^{-\eta}}{\nu^{-\eta}}\bar{n}\cdot A_n\right]$$
$$S_n = \sum_{\text{perms}} \exp\left[-\frac{gw}{n\cdot\mathcal{P}}\frac{|2\mathcal{P}_{g3}|^{-\eta/2}}{\nu^{-\eta/2}}n\cdot A_n\right]$$

Regularize Jet and soft function with a rapidity regulator, introduced directly in SCET

New regularization induces new type of running for soft and jet. Large singular logs summed up via **Renormalization Group Equation**

Ingredients for a resummed calculation

_	cusp	non-cusp	matching	$\beta[\alpha_s]$
LL	1	-	tree	1
NLL	2	1	tree	2
NNLL	3	2	1	3
$N^{3}LL$	4^{pade}	3	2	4
NLL'	2	1	1	2
NNLL'	3	2	2	3
$ m N^3LL'$	4 ^{pade}	3	3	4

 Image: Any event shape using CAESAR [Banfi, Salam, Zanderighi]

 Image: NLL results

 Image: Image: Image: Any event shape using CAESAR [Banfi, Salam, Zanderighi]

 Image: NLL results

 Image: Image:

N²LL results { Energy-Energy Correlation [De Florian, Grazzini] [Becher, Bell] [Becher, Bell]

N³LL results[Becher, Schwartz] [Abatte, Fickinger, Hoang, VM, Stewart]N³LL resultsHeavy Jet Mass[Chien, Schwartz] [Hoang, VM, Schwartz, Stewart, w.i.p.]C-parameter[Kolodrubetz, VM, Stewart, w.i.p.]

POWER CORRECTIONS

Approaches to Power Corrections

Monte Carlo Generators

Renormalon based

• Shape functions

Pythia, Ariadne, Herwig, Powheg, ...

Use hadronization models

Hard to separate perturvative vs nonperturbative effects

Effective coupling model [Dokshitzer & Webber] Dressed gluon [Gardi & Gruenberg]

Residual model dependence

Factorization based [Korchemski, Sterman, Tafat] SCET based [Hoang & Stewart; Lee & Sterman]

Derived directly from QCD Operator definition Systematically improvable

Approaches to Power Corrections

Monte Carlo Generators

Pythia, Ariadne, Herwig, Powheg, ...

Use hadronization models

Hard to separate perturvative vs nonperturbative effects

Use of MC to estimate power corrections to event shape distributions is not appropriate for high-precision studies which include high-order perturbative corrections

Mixes LL parton shower (and shower IR cuttoff) with multiloop computations and higher order resummation (with dim-reg IR cuttoff)

Shower tunned mainly at the Z-pole only

For high-precision studies at a linear collider one would need a MC with **more perturbative input** and tunned to several values of c.o.m. energy

Dispersive approach

[Dokshitzer & Webber]

Assume that α_s is replace by an effective coupling below certain cutoff μ_I

Subtract from perturbation theory contributions at scales below μ_I

Initial approach relied on one gluon exchange

It is believed that this procedure removes all renormalons

The Milan factor accounts for two-gluon exchange

[Dokshitzer, Webber Salam]

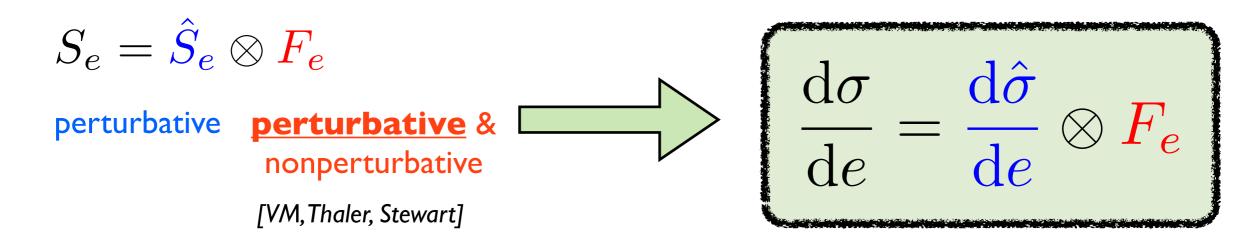
It predicts that leading power correction is universal up to a calculable coefficient

Effect on first moment $\langle e \rangle = \langle e \rangle_{\rm PT} + c_e \frac{\mathcal{P}}{Q}$ $c_e = \text{universality constant}$ Effect on distributions $\frac{d\sigma}{de} = \frac{d\hat{\sigma}}{de} \left(e - c_e \frac{\mathcal{P}}{Q} \right)$ (more on this later) $\mathcal{P} = \frac{4C_F}{\pi^2} \mathcal{M} \frac{\mu_I}{Q} \left\{ \alpha_0(\mu_I) - \alpha_s(\mu_R) - \beta_0 \frac{\alpha_s^2}{2\pi} \left(\ln \frac{\mu_R}{\mu_I} + \frac{K}{\beta_0} + 1 \right) \right\}$ Milan Factor $\simeq 1.49$

Shape function approach

[Korchemsky & Sterman] [Korchemsky & Tafat]

Soft function is convolution of perturbative soft function and shape function



Non pert. distribution is convolution of pert. distribution with shape function This is valid on the peak of the distribution as well

Effect on moments
$$\langle e^n \rangle = \sum_{i=0}^n {n \choose i} \langle e^i \rangle_{\rm PT} \frac{\Omega_{n-i}^e}{Q^{n-i}}$$
[Korchemsky & The second second

Tafat] r, Hoang,VM, Stewart]

Sterman]

Massless universality

[Lee & Sterman]

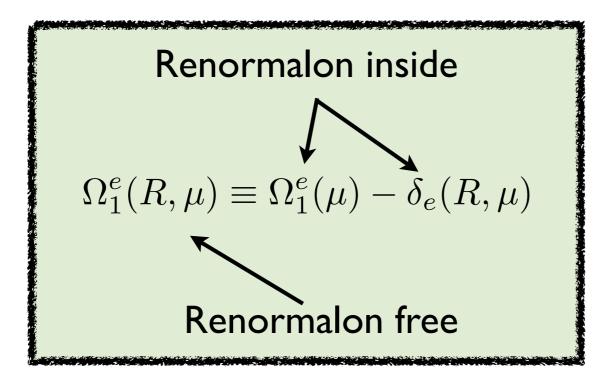
Shape function approach

[Korchemsky & Sterman] [Korchemsky & Tafat]

Stewart]

The leading $u = \frac{1}{2}$ renormalon in Ω_1 can be removed by appropriate subtractions

$$\hat{\sigma}_{e}(x) \to \tilde{\sigma}_{e}(x) = \hat{\sigma}_{e}(x) e^{-ix \, \delta_{e}(R,\mu)/Q}$$
[Hoang & Kluth]
$$\delta_{e}(R,\mu) = \frac{c_{e}}{c_{e'}} Re^{\gamma_{E}} \frac{\mathrm{d}}{\mathrm{d}\ln(ix)} \ln S_{e'}^{\mathrm{pert}}(x,\mu) \Big|_{x=(iRe^{\gamma_{E}})^{-1}}$$
[VM, Thaler, Stewer

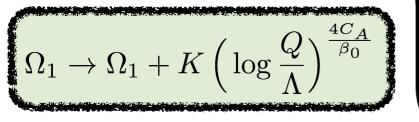


Massless predictions for universality

Thrust	$\tau = 1 - \max_{\vec{n}} \frac{\sum_i \vec{p_i} \cdot \vec{n} }{\sum \vec{p_i} }$	$c_{\tau} = 2$
Two-Jetiness	$\tau_2 = 1 - \max_{\vec{n}} \; \frac{\sum_i \vec{p_i} \cdot \vec{n} }{Q}$	$c_{\tau_2} = 2$
C-parameter	$C = \frac{3}{2} \frac{\sum_{i,j} \vec{p_i} \vec{p_j} \sin^2(\theta_{ij})}{(\sum_i \vec{p_i})^2}$	$c_C = 3\pi$
Angularities	$\tau_{(a)} = \frac{1}{Q} \sum_{i} E_i (\sin \theta_i)^a (1 - \cos \theta_i)^{1-a}$	$c_{\tau_{(a)}} = \frac{2}{1-a}$
Jet Masses	$\rho_{\pm} = \frac{1}{Q^2} \Big(\sum_{i \in \pm} p_i\Big)^2$	$c_{\rho} = 1$

Hadron Mass Effects on Power Corrections

[Salam & Wicke]



Use the flux tube model (later refined with QCD effects)

Predict that hadron masses break universality

Find a privileged scheme (E-scheme) which preserves universality

Predict that hadron multiplicity translates into log(Q) effects on power corrections.

Use SCET, first principle computation

Confirm that mass breaks universality

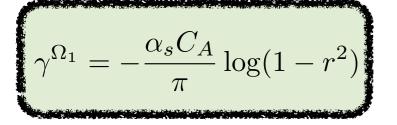
Find sets of universality classes with same power correction

Compute anomalous dimension of $\,\Omega_1\,$

Compute matching for thrust of the OPE

It appears that these running effects have small effect on $\,\alpha_s$ determinations, but can increase the error

[VM, Thaler, Stewart]

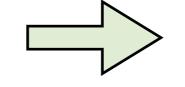


NONSINGULAR TERMS AND MASS EFFECTS

Nonsingular terms

These terms are suppressed in the peak, but important in tail and O(I) in far tail

Factorization and resummation for nonsingular never worked out



Can be included in fixed order

In far tail resummation has to be turned off, since logs are no longer large

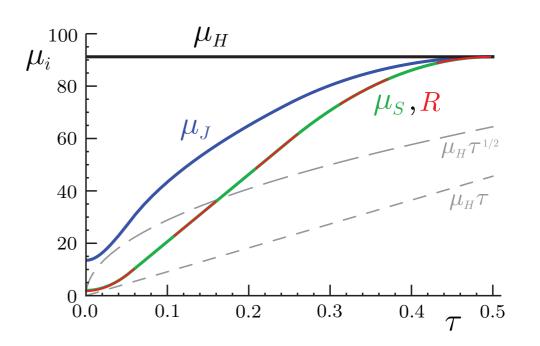
Modify logs to switch off resummation

[Jones, Ford, Salam, Stenzel,Wicke]

Modified log(R) matching scheme

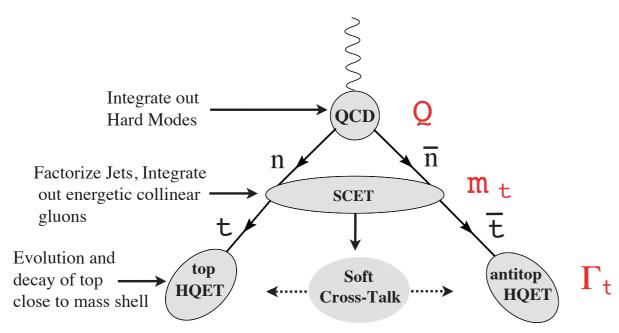
$$\log \left[\Sigma(\tau_{\max}) \right] = \frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\tau} \bigg|_{\tau = \tau_{\max}} = 0$$
$$L \longrightarrow L' = \frac{1}{p} \log \left(\left(\frac{1}{\tau}\right)^p - \left(\frac{1}{\tau_{\max}}\right)^p + 1 \right)$$

Merge all scales in far tail with profile functions [Abbate, Fickinger, Hoang, VM, Stewart]



Quark mass effects on event shapes

[Fleming, Hoang, Mantry, Stewart]



Production of very energetic top quarks Resummation of logs at N²LL Only Jet function modified at this order Considers decay of top quark Designed to measure top mass at ILC

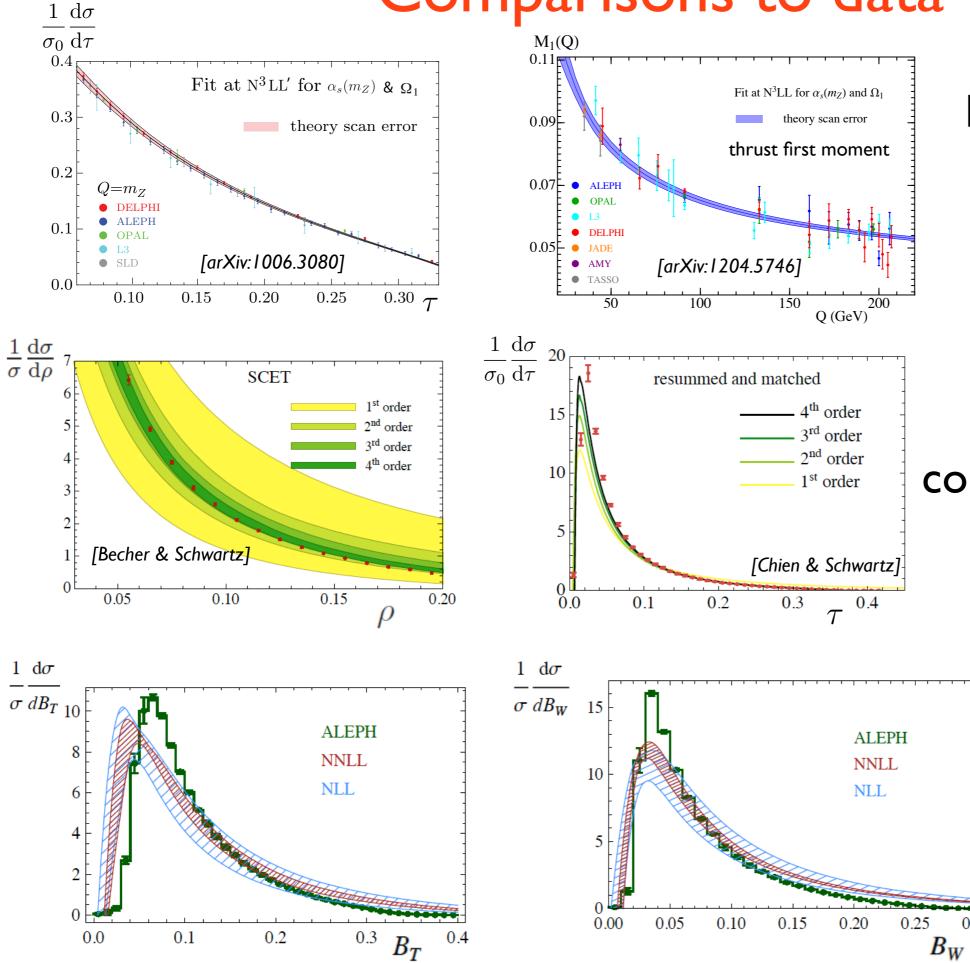
$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}M_t^2 \,\mathrm{d}M_{\bar{t}}^2} \right)_{\mathrm{hemi}} = \sigma_0 \, H_Q(Q, \mu_Q, \mu_m) H_m\left(m, \frac{Q}{m}, \mu_m, \mu\right) \\ \times \int \mathrm{d}\ell^+ \mathrm{d}\ell^- B_+\left(\hat{s}_t - \frac{Q\ell^+}{m}, \Gamma, \mu\right) B_-\left(\hat{s}_{\bar{t}} - \frac{Q\ell^-}{m}, \Gamma, \mu\right) S_{\mathrm{hemi}}(\ell^+, \ell^-, \mu)$$

[Abbate, Fickinger, Hoang, VM, Stewart]

Applied top results to include bottom mass corrections to thrust Included non-singular contribution Included renormalon subtraction

COMPARISONS TO DATA AND FITS

Comparisons to data



N³LL, with power corrections

[Abatte, Fickinger, Hoang, VM, Stewart]

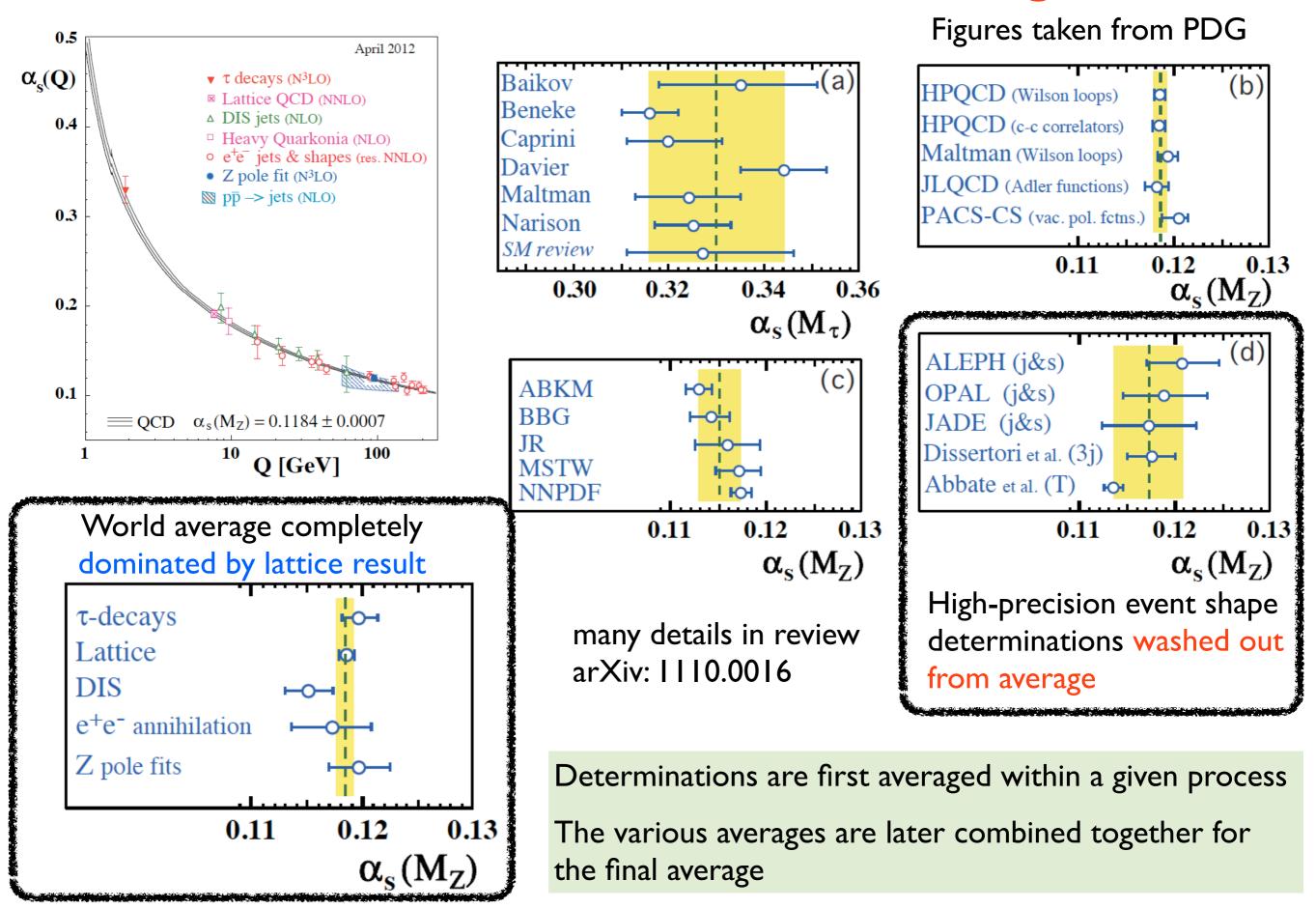
N³LL, no power corrections, singular + nonsingular

> N²LL, no power corrections, only singular

> > [Becher & Bell]

0.30

α_s determination: world average



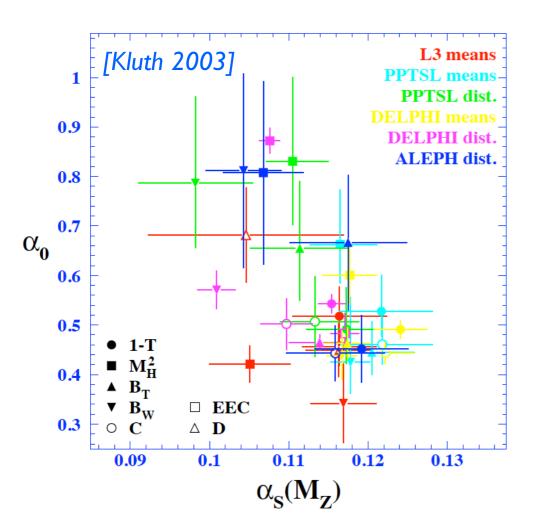
Experimental data

Facility	Location	\sqrt{s} [GeV]	Experiments	
ACO [84]	LAL Orsay	≈1	M3N [85, 86]	
ADONE [87]	INFN Frascati	1 - 3	Boson [88], $\mu\pi$ [89], $\gamma\gamma$ [90],	At each value of Q
	IIII II IIIIOUUU	1 0	$\gamma\gamma 2$ [91], MEA [92]	one expects to find
VEPP-2 [93]	Novosibirsk	1 - 1.5	VEPP-2 [93]	a distribution for
CEA [94]	Cambridge, MA	4	BOLD [95]	each event shapes
SPEAR [96]	SLAC Stanford	2 - 8	SLAC-LBL [97, 98],	plus moments of
			MARK I [99], MARK II [100]	the distribution
PEP [101]	SLAC Stanford	29	MARK II [102], HRS [103],	
			$TPC/2\gamma$ [104, 105], MAC [106]	
DORIS [107, 108]	DESY Hamburg	3 - 11	PLUTO [109], DASP [110, 111],	
	0		LENA [112], DH(HM) [113, 114]	
CESR [115]	Cornell, Ithaka	10 - 11	CLEO [116, 117],	Really a lot of
			CUSB [118, 119]	data!!!
PETRA [120]	DESY Hamburg	12 - 47	CELLO [121], JADE [122],	
			MARK J [123], PLUTO [109],	
			TASSO [110, 124]	
TRISTAN [125]	KEK Tsukuba	50 - 64	TOPAZ [126], VENUS [127],	Small Q,
			AMY [128]	ornan Ç,
SLC [129]	SLAC Stanford	≈ 91	MARK II [102], SLD [130]	not used
LEP [131]	CERN Geneva	88 - 209	ALEPH [132, 133],	
			DELPHI [134, 135],	
Table taken fror	n [Kluth 2003]		L3 [136], OPAL [137]	

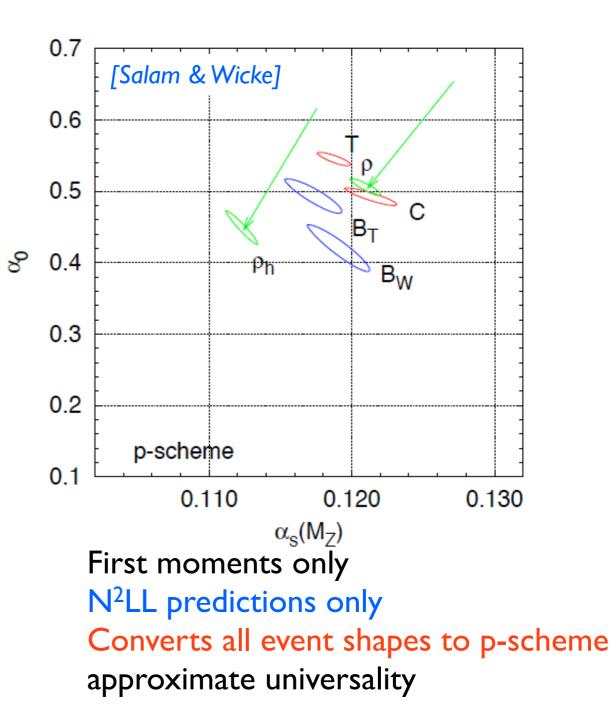
These tests have been so far done in the dispersive approach model

They mainly use the first moment of the distributions

Mainly two loop studies only

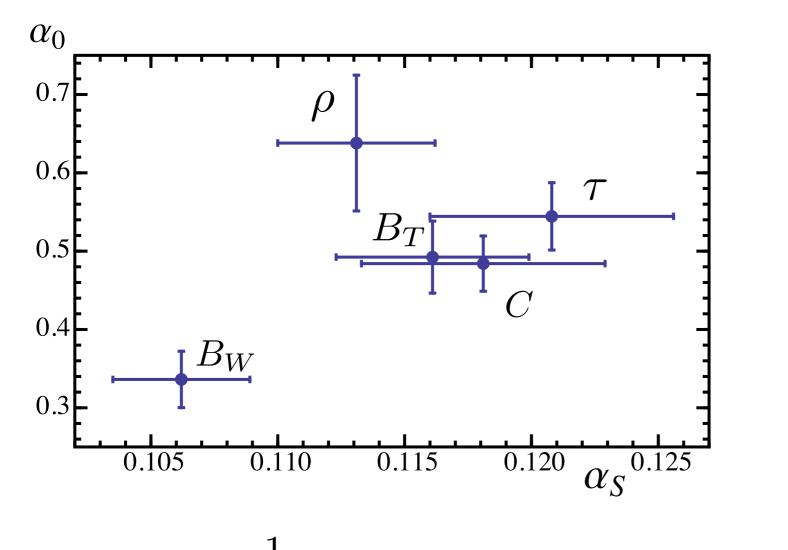


Distributions and moments N²LL predictions only Two loop predictions only Does not account for hadron mass effects



[Gehrmann, Jaquier, Luissoni]

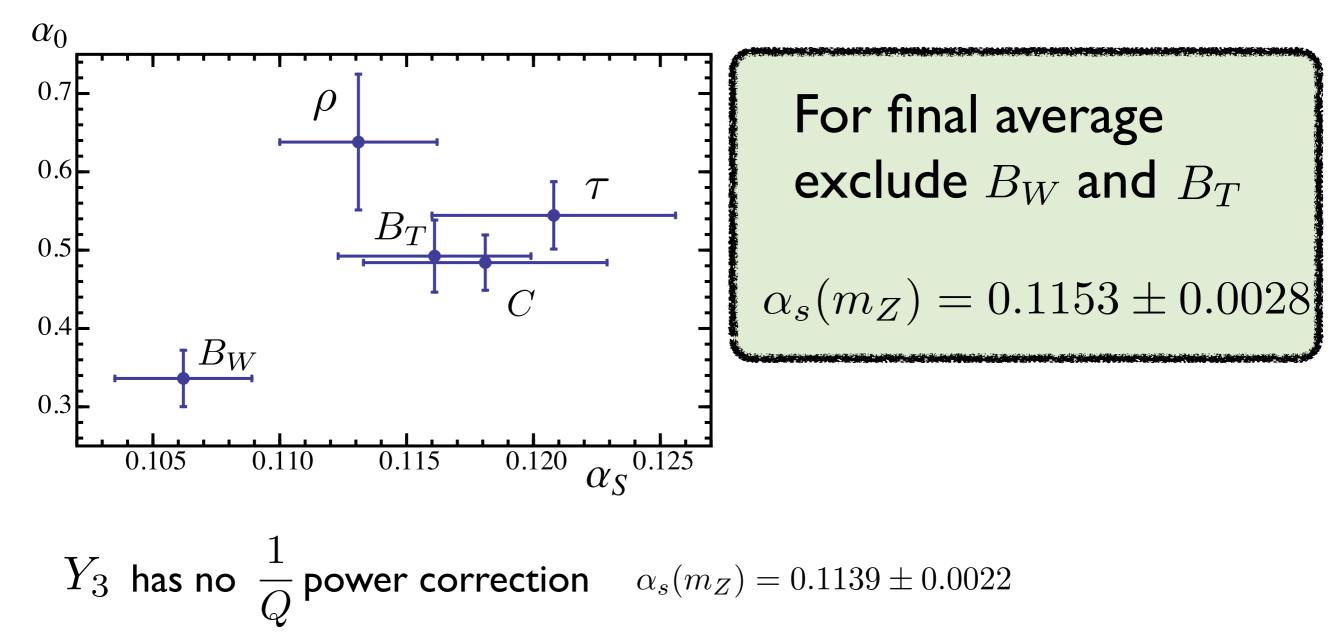
Only universality study with 3-loop input They use first five moments Did not take into account hadron mass effects



 Y_3 has no $\frac{1}{Q}$ power correction $\alpha_s(m_Z) = 0.1139 \pm 0.0022$

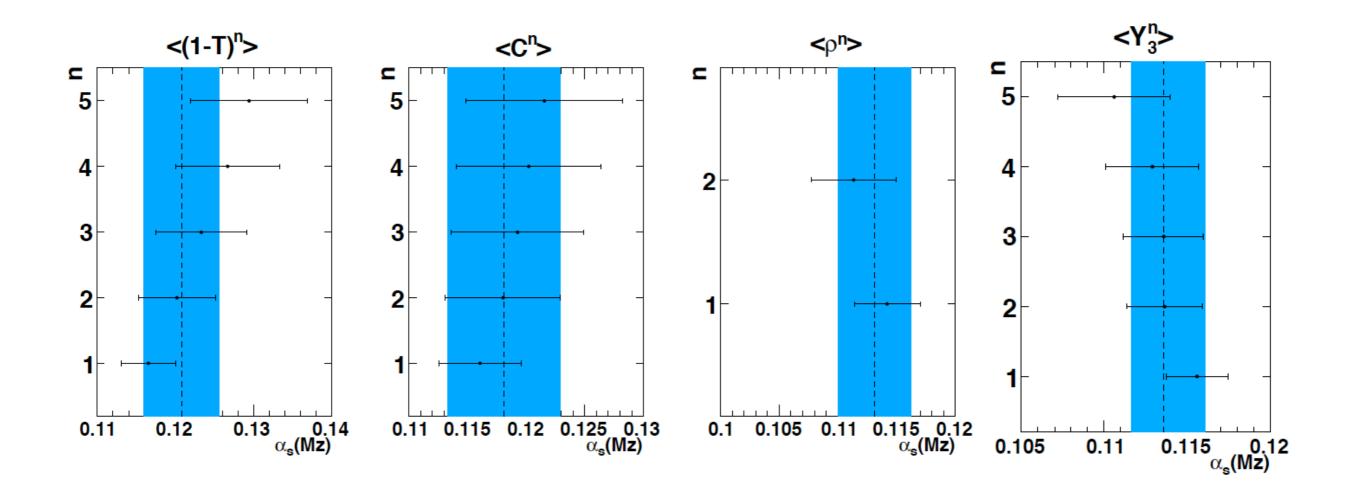
[Gehrmann, Jaquier, Luissoni]

Only universality study with 3-loop input They use first five moments Did not take into account hadron mass effects



[Gehrmann, Jaquier, Luissoni]

Only universality study with 3-loop input They use first five moments Did not take into account hadron mass effects

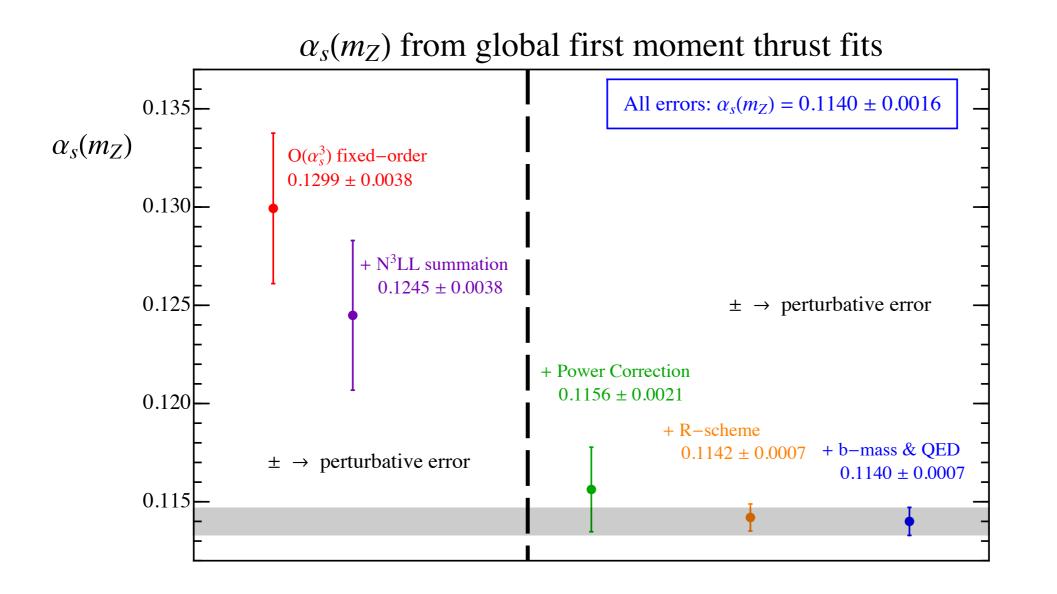


strong dependence of $\alpha_s(m_Z)$ on n

α_s determination: moment fits

[Abbate, Fickinger, Hoang, VM, Stewart]

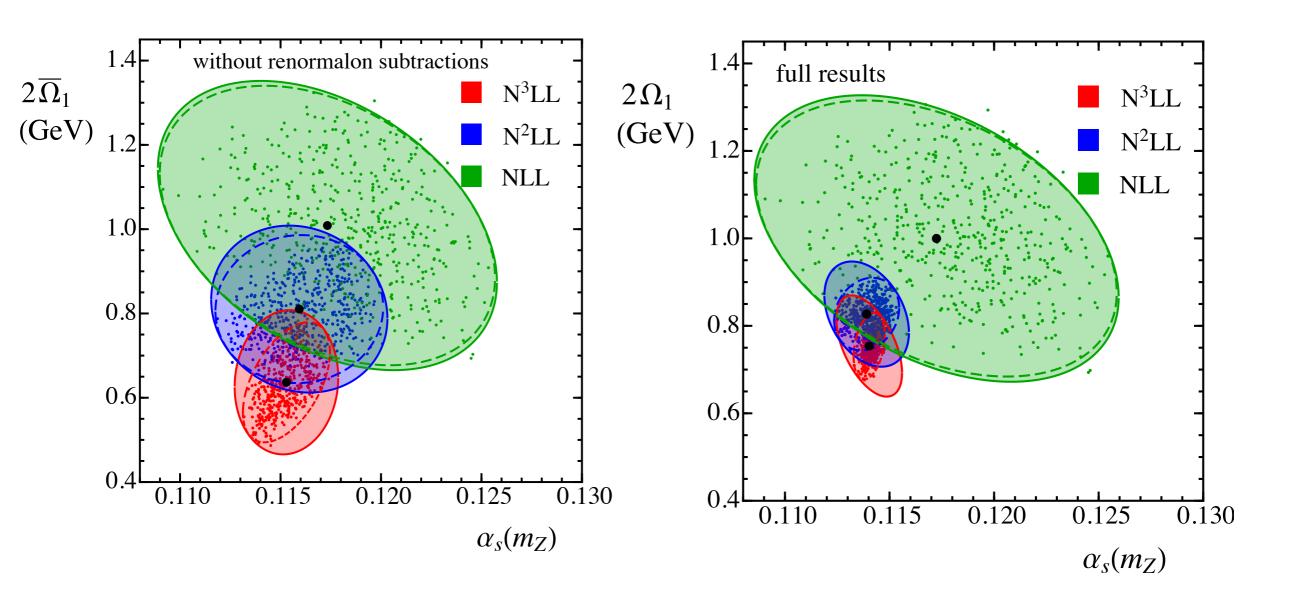
Only first moment of thrust Used N³LL code, with power corrections and renormalon subtraction Different levels of theoretical sophistication



α_s determination: moment fits

[Abbate, Fickinger, Hoang, VM, Stewart]

Only first moment of thrust Used N³LL code, with power corrections and renormalon subtraction Different levels of theoretical sophistication Significant error reduction when renormalon is removed

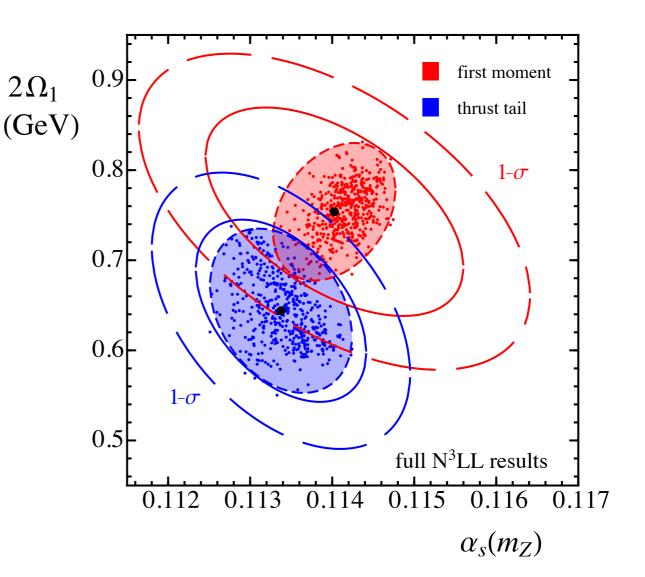


α_s determination: moment fits

[Abbate, Fickinger, Hoang, VM, Stewart]

Only first moment of thrust Used N³LL code, with power corrections and renormalon subtraction Different levels of theoretical sophistication Significant error reduction when renormalon is removed

Good agreement with tail fits



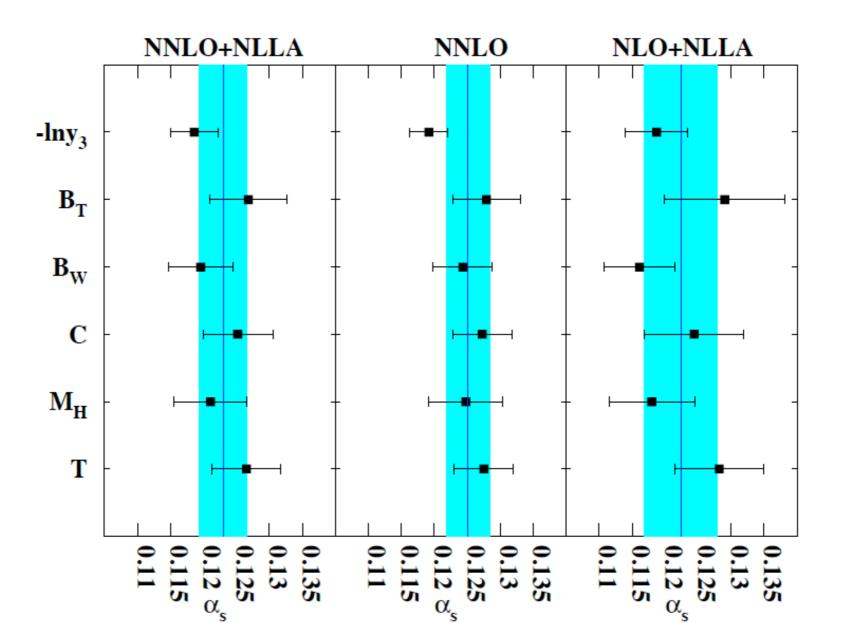
α_s determination: tail fits Only consider analysis with 3-loop input Does not include resummation Fits to LEP data $\alpha_s(m_Z) = 0.1224 \pm 0.0033$ Q by Q fits [Dissertori et al 0712.0327] Many event shapes Power corrections from MC **NNLO NLO** NLO+NLLA H **y**₃ B_T **B**_W С M_H Т

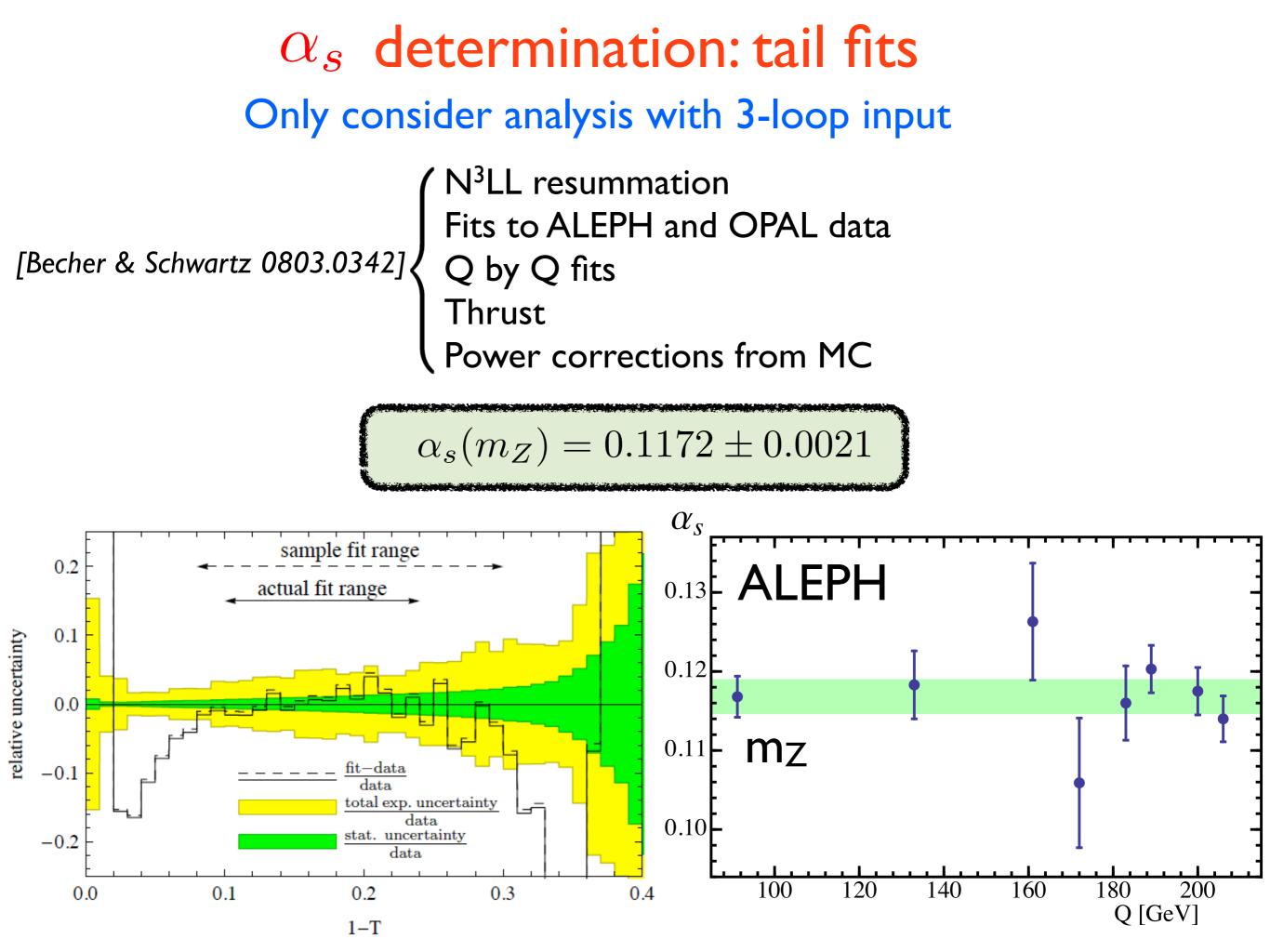
α_s determination: tail fits

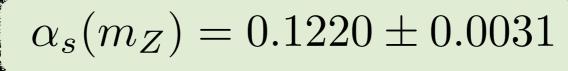
Only consider analysis with 3-loop input

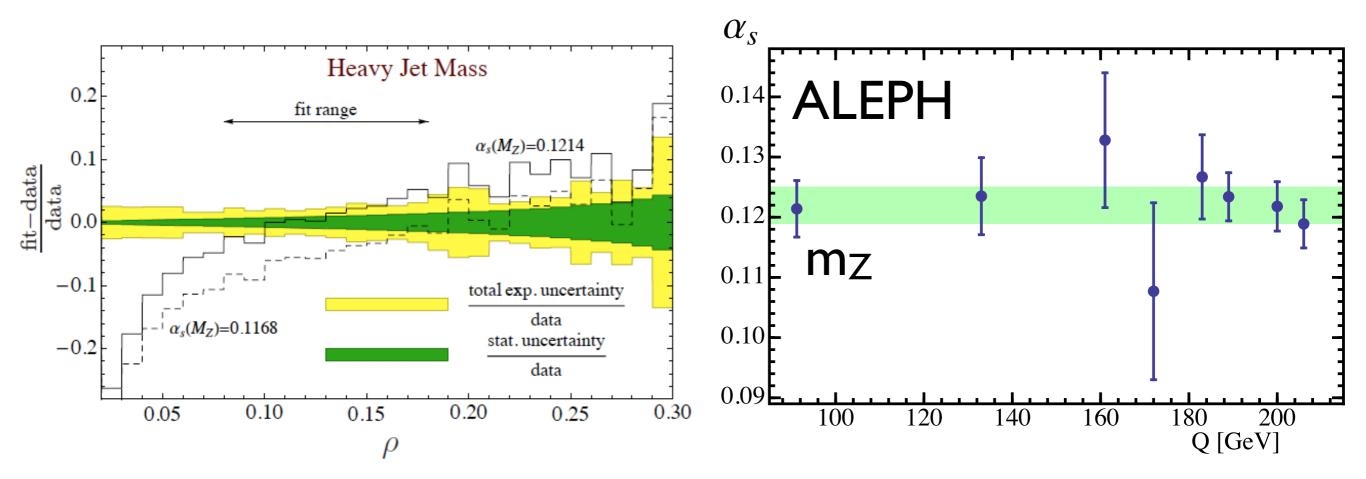
[Dissertori et al 0906.3436]

 $\begin{cases} \text{NLL resummation} \\ \text{Fits to LEP data} \\ \text{Q by Q fits} \\ \text{Many event shapes} \\ \text{Power corrections from MC} \end{cases} \\ \end{cases}$









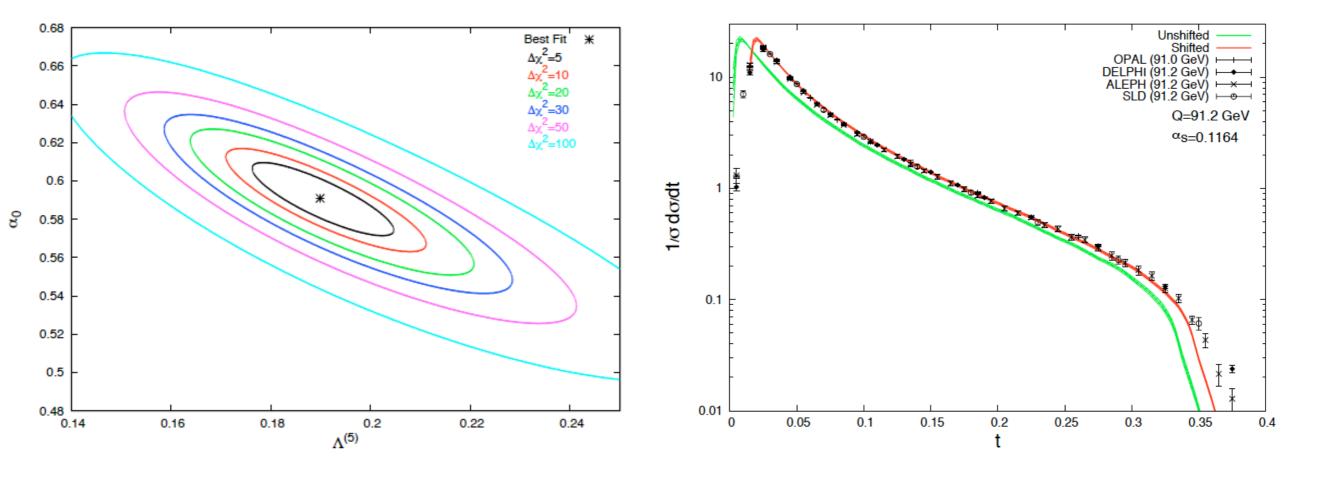
α_s determination: tail fits

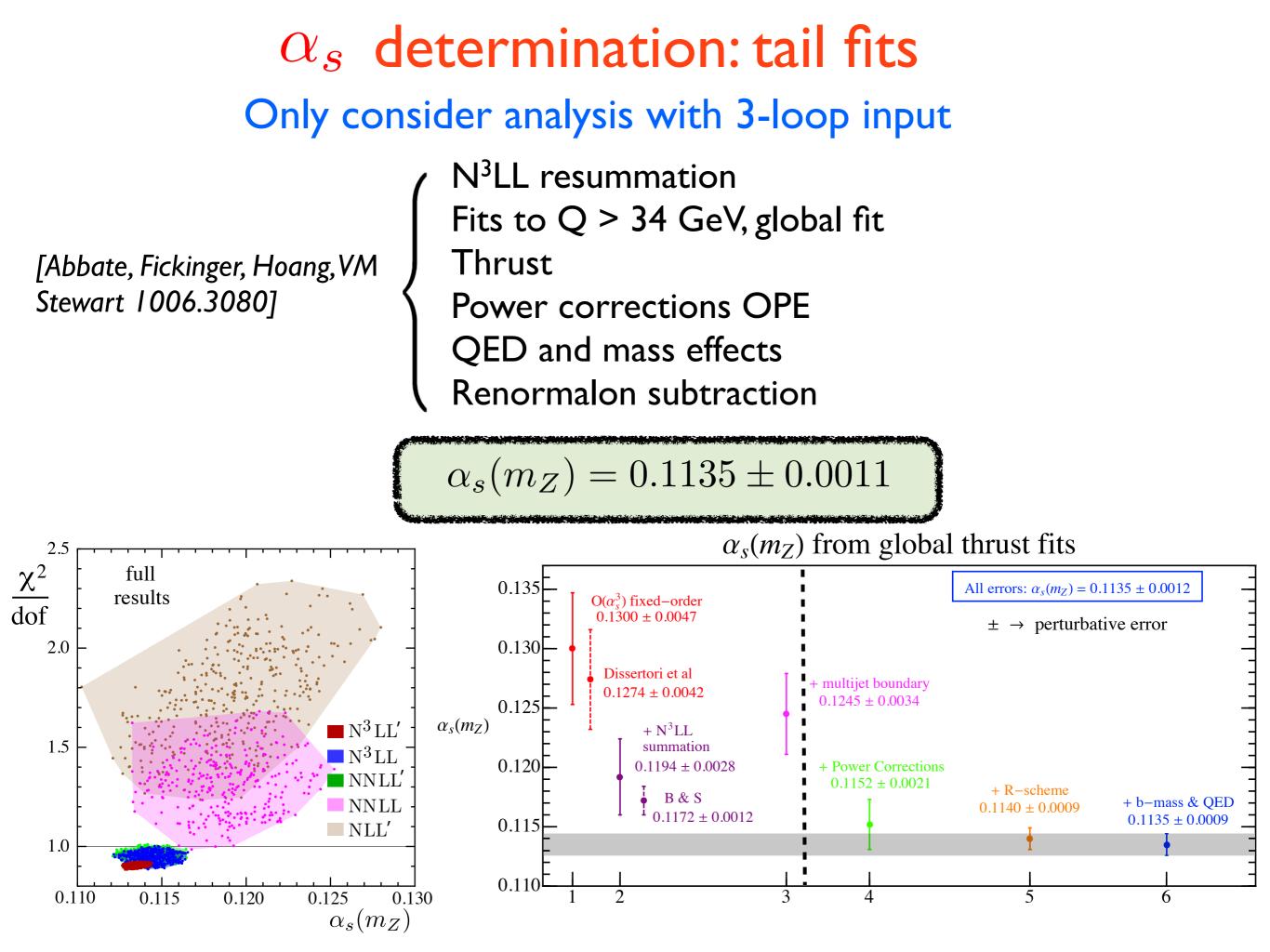
Only consider analysis with 3-loop input

[Davidson & Webber 0809.3326]

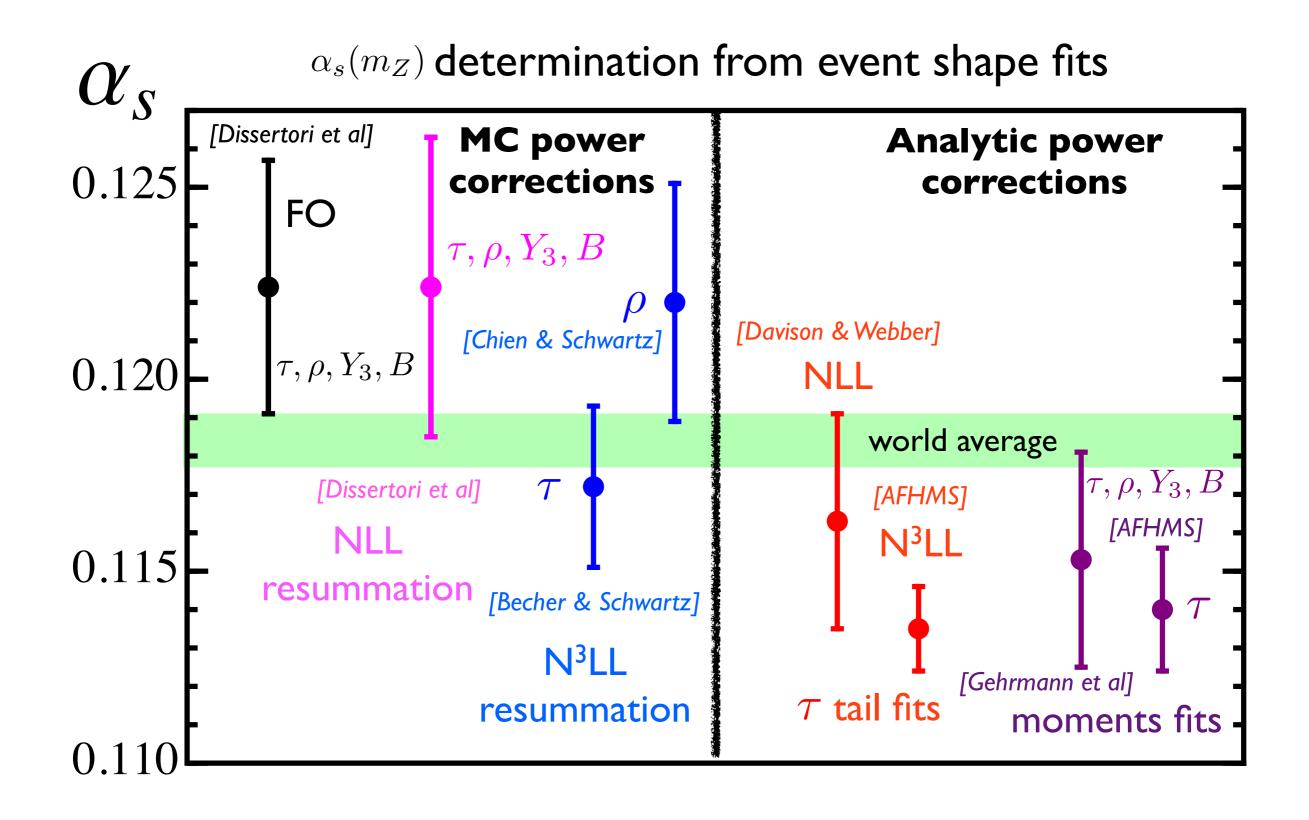
N²LL resummation Fits to many Q values, global fit Thrust Power corrections from dispersive model

$$\alpha_s(m_Z) = 0.1163 \pm 0.0028$$



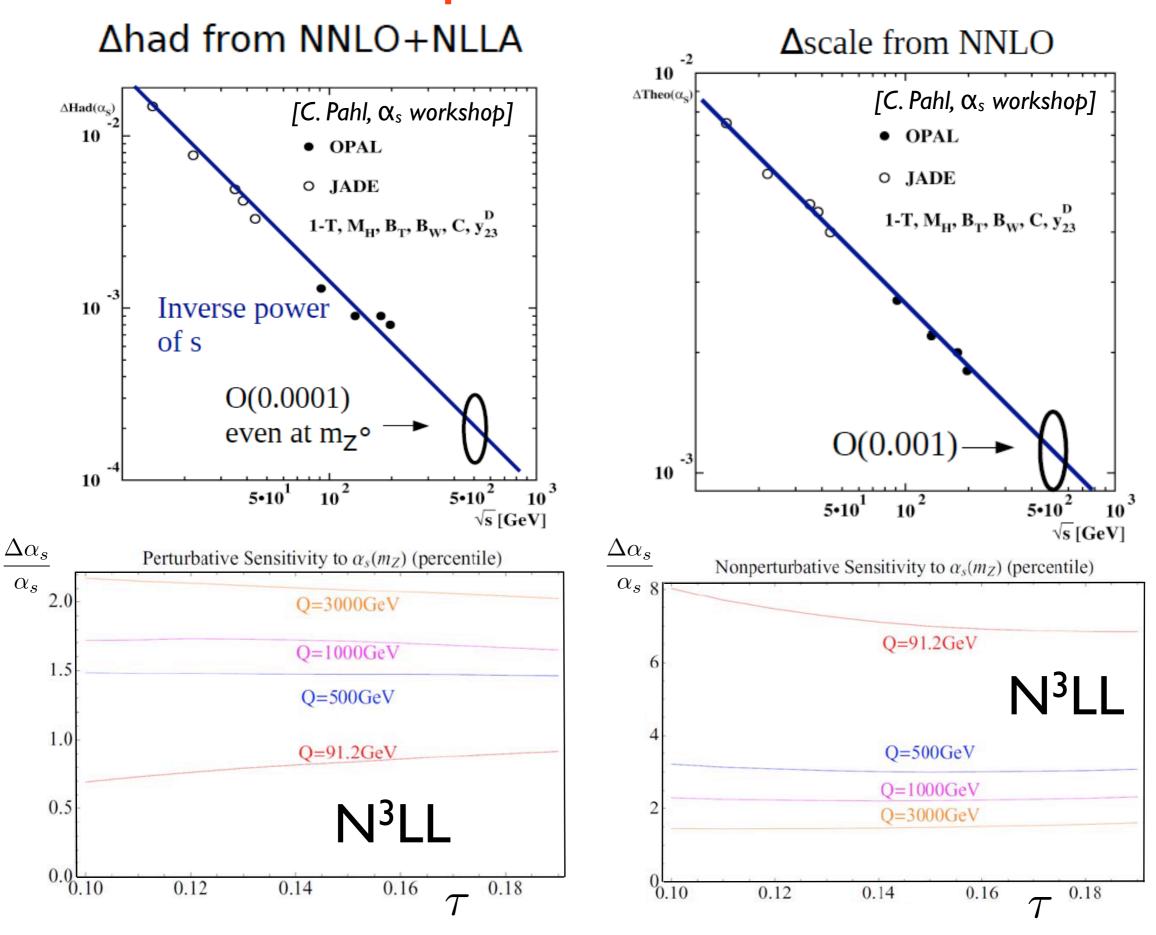


α_s determination: compendium Only consider analysis with 3-loop input



PROSPECTS FOR ILC-CLIC

Prospects for ILC-CLIC



CONCLUSIONS

CONCLUSIONS

- Huge amount of high-quality event-shape data
- Significant theoretical progress: fixed order, resummation, power corrections, etc...
- High precision α_s determination, low central value...
- Negligible power corrections at ILC-CLIC energies. Possibility to measure top quark mass.
- Looking forward to ILC and CLIC data !!!