Development of Readout ASIC and Sensor for FPCCD Vertex Detector

E.Kato, H. Sato, H.Ikeda, K Itagaki, A.Dubey, A.Ishikawa, T.Saito, Y.Sugimoto, Y.Takubo, H.Yamamoto

2012/10/23

2012 LCWS12 Arlington

©Rey.Hori

FPCCD features

Requirements for CCD and readout ³ ASIC

readout speed> 10Mpix/sec

 Readout all pixels within Inter train time(200ms)

signal meas. accuracy < 50 e-

- Faint signal level : ~500 e-
- Noise + AD conversion accuracy< 50 e-

power consumption < 6mW/ch (ASIC)
< 10mW/ch (CCD)</pre>

- Placed in -40°C cryostat(-40°C)
- Total power consumption <100W

Develop readout ASIC & CCD that satisfies all requirements

ASIC Prototype

Chip parameters	2 nd prototype	3 rd prototype
process	0.35um	0.25um
Chip area	4.3x4.3mm2	3.7x3.75mm2
Gain coverage(from CCD)	12.5~200 (8 steps)	32~64(2 steps)
# of channels	8ch	8ch
Input capacitance form CCD	20pF	3.2pF

Channel design

ASIC features & improvements1

Power consumption

Meas. 30.6 mW/ch → simulation4.8mW/ch (peak 5.4mW/ch)

INL(integral non linearity)

- Shows curvature in linearity. Caused upstream circuits.

INL $17\% \rightarrow < 2\%$

2012 LCWS12 Arlington

ASIC features & improvements2

Radiation tolerance

- 3rd prototype implemented DICE FF: radiation hardened by design flip-flop with high single event effect(SEE) immunity.
- baseband transmission
 - 10Mpix/s = 100MHz ADC comparator CK
 - Return zero→non return zero
 - Longer high period(10ns), Easy sampling

Setup

VME based old system

SEABAS2 based new system

readout board

SEABAS2 based system

1GbE

Compact for beam test

Short cables + FFC higher Reliability@100MHz

readout board

2012 LCWS12 Arlington

Test board

2nd prototype ASIC Frequency dependence

- DNL@low frequency
 - DNL \pm 1LSB
 - MSB,2MSB displacement from bit weight
- DNL @high frequency (100MHz CK)
 - DNL \pm 3LSB
 - Due to displacement from bit weight, becomes meta-stable @ bit change. Thus causes bit jump @high freq.
 - Process change + Speed control @3rd prototype

Measurement accuracy

CCD prototype

■ FPCCD sensor prototype

Hamamatsu Photonics 2phase transfer CCD

<Pixel size : 12umx12um>

- Chip size: 8.2mm(H)x7.5mm(V)
- thickness: epi layer 15um, Si total 50um
- # of channels : 4 ch
- ➤ Tested!!
- < Pixel size : 6umx6um>
 - Horizontal shift register size 6umx12um
 - thickness: epi layer 15um, Si total 50um
- > Working! Now testing with 3rd prototype ASIC

12um² prototype

6um² prototype

$\frac{12 \mu m}{PROTOTYPE} \text{ ASIC}$

Noise evaluation from pedestal distribution

dark current:

—hot pixel ($Q_{hotpixel} > 5\sigma_{ccd} + \langle Q_{ccd} \rangle$) temporal, temperature dependence well understood

-dark current suppressed under ILC conditions (200ms,-40°C)

Pedestal distribution: $\sigma_{(dummy pixel)} \doteq \sigma_{(active pixel)} @-40^{\circ}C$ noise: ~55 e-(ASIC indep. test within 16e-)

12

Sr90 β-ray measurement

Setup

Irrad unit: select 2MeV β-ray

■Sr90(~10°C,2.5Mpix/s)

- Checked charge distribution with 2MeV β -ray
- Few charge leakage to adjacent pixels.

Fe55 X-ray measurement

setup

- -irrad time10s,-40°C,3000 frames
- ■S/N:37
 - Single pixel hit extraction
 - energy resolution: 120 eV

Highly sensitive, low noise detector!

CTI measurement with Fe55

CTI(Charge Transfer Inefficiency)

For high sensitivity, we need high transfer rate(CTE)

(CTI is degraded by radiation damage)

CTI meas. results with Fe55

transfer efficiency

- No significant inefficiency was seen
- Transfer rate of most extreme pixel within 1ch ILC sensor

module is 97.9 % (largest number of pixels)

Summary & plan

<SUMMARY>

- 3rd prototype ASIC is working!
- 12um CCD + 2nd prototype ASIC
 - Showed promising results
 - S/N, CTI, charge distribution etc
 - more test will be done with new & improved 3rd ASIC +

Finer segmented CCD.

<PLAN>

- 3rd prototype 100MHz CK operation
- 6um CCD + 3rd prototype ASIC
 - Fe55 S/N
 - Large wafer + 3rd prototype ASIC
 - CTI measurement