INSTITUTO TECNOLÓGICO DE ARAGÓN

Base line design for the ILC-FTD subdetector power distribution system

Dr. Fernando Arteche

Instituto de Física de Cantabria (CSIC-UC) Centro Nacional de Microelectrónica Barcelona (CSIC) Instituto Tecnológico de Aragón (G. Aragón)

OUTLINE

- 1. Introduction
- 2. Power requirements
- 3. Powering schemes
 - –DC-DC converters based power distribution
 - -Super-capacitors based power distribution.
- 4.Conclusions

1. Introduction

- The mstrip-FTD system is a silicon strip tracker located in the innermost part of the tracker region of the ILD.
- It consists of 10 disks.
 Each disk has 16 petals

NIX

2. Power requirements

- The ILC accelerator has a duty cycle of 0.5%
 - 1 ms bunch train every 200ms

- If the power demanded by the FEE is synchronized to the bunch train, it helps to save energy
- Several conservative considerations have been assumed in the power distribution operation:
 - A conservative duty cycle operation.
 - 1 ms power up / down
 - 3 ms operation state to stabilize power and operate.
 - During the standby estate .
 - Power decreases to 20%.
 - FTD power consumption based on CMS Tracker upgrade FEE designs.

2. Power requirements

<u>CMS Tracker upgrade FEE power consumption:</u>

- CBC chip:

Mark Raymon's calculation for CBC and GBT

- 128ch I1.25V 30mA / I2.5V 20mA
- Optical link
 - 1 GBT Max number of channels: 20480
 - 100% ocupp. I1.25 1000 mA / I2.5V 280mA (2 W)

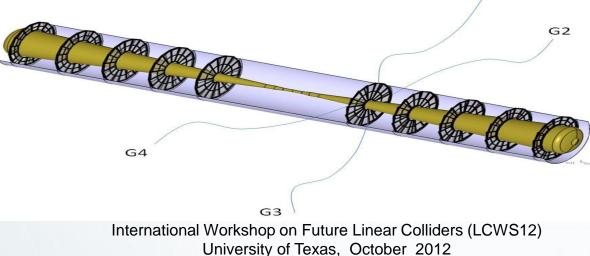
Estimated power values for FTD FEE:

- FTD chip :
 - 256 ch. I1.5V 60mA / I2.5V 40mA (≈ 740 µW/ch)
- Optical link
 - Max number of channels: 20480
 - 1Channel I1.5 5.13 μA / I2.5V 14.4μA
- Power stand-by status (20 % of max power)

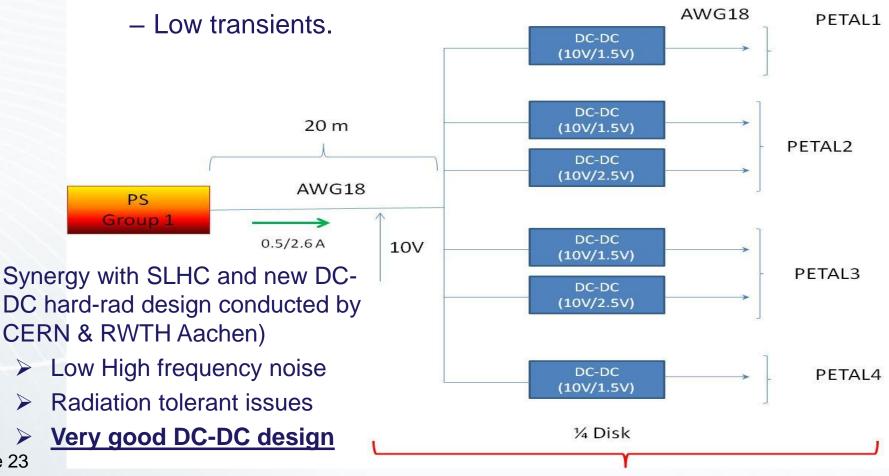
2. Power requirements

Current consumption of Strip - FTD

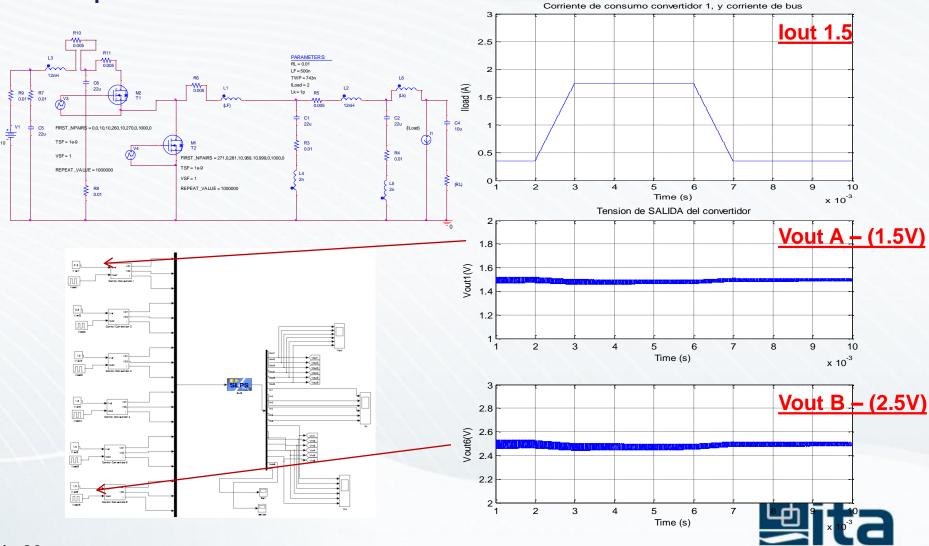
	MIDDLE PITCH									
<u>FTD</u>	FTD3		FTD4		FTD5		FTD6		FTD7	
	INN	Ουτ	INN	Ουτ	INN	Ουτ	INN	Ουτ	INN	Ουτ
№ Readout channel	33920	61504	41600	64224	45472	65504	51232	67424	63	424
Chips per petal (256 ch)	24		26		28		29		16	
Optical links per petal	1/2		1/	′2	1/2		1/2		1/2	
l1.5 (A) per Petal	1.75 / 0.35		1.9/0.38		2.05 / 0.41		2.12 / 0.42		1.16/0.23	
l2.5 (A) per Petal	1.05 / 0.21		1.13 / 0.23		1.22/0.24		1.27/0.25		0.7/0.14	
l per petal	2.79 / 0.56		3.03 / 0.61		3.26 / 0.65		3.39 / 0.68		1.86 / 0.37	
I per disk	44.6 / 8.9		48.5 / 9.71		52.08 / 10.42		54.19/10.84		29.76 /5.95	
TOTAL Mstrip- FTD Current (both sides)		458 A /	91.6 A	(active / stand-by currents)						


3. Powering schemes

- The total Strip-FTD current demanded is:
 - Bunch crossing state 458 A
 - Stand-by state 91.6A
- Several important issues have to be considered during the design of the power system:
 - Transient phenomena
 - EMI phenomena
 - Power dissipation effects
- All these phenomena have an impact on the design of the power supply distribution system
 - Topology
 - Cooling
 - Material budget


3. Powering schemes

- There are several topologies that may be used for FTD.
 - DC-DC-based power distribution
 - Super-capacitor based power distribution
- Each of them has advantages and disadvantages
 - Both systems are under study.
 - Real measurements
 - Simulations (MATLAB & Cadence tools)
- It has been considered a granularity based on ¼ per disk.



- It is based on the installation of DC-DC converter at FTD level.
 - It absorb transients related to power pulsing system.
 - Low currents before DC-DC due to converter ratio.

8 de 23

 A Matlab – Pspice model has been prepared to study the power distribution

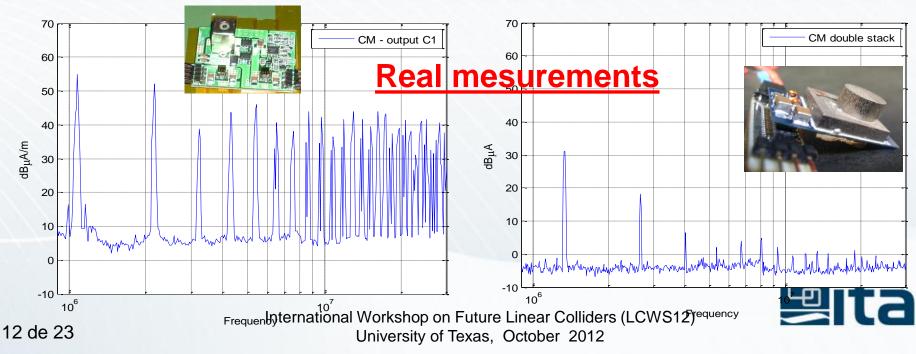
- Example (1/4 disk) : Power values per group FTD 6+:
 - FTD level 4 petals:
 - 6 DC-DC converters
 - 4 DC-DC (10V 1.5V) 2.1A / 0.4A
 - 2 DC- DC (10V 2.5V) -2.5A / 0.5A
 - Short cabling Low current (low transients) AWG18
 - Outside FTD (1cable per ¼ disk)
 - Max out current per DC-DC less than 3 A (2.5A /0.5A)
 - Transients attenuated by the DC-DC
 - Primary power unit
 - Imax=3 A / V= 12V Power required > 36 W

- TOTAL INSTALED POWER REQUIRED FOR FTD

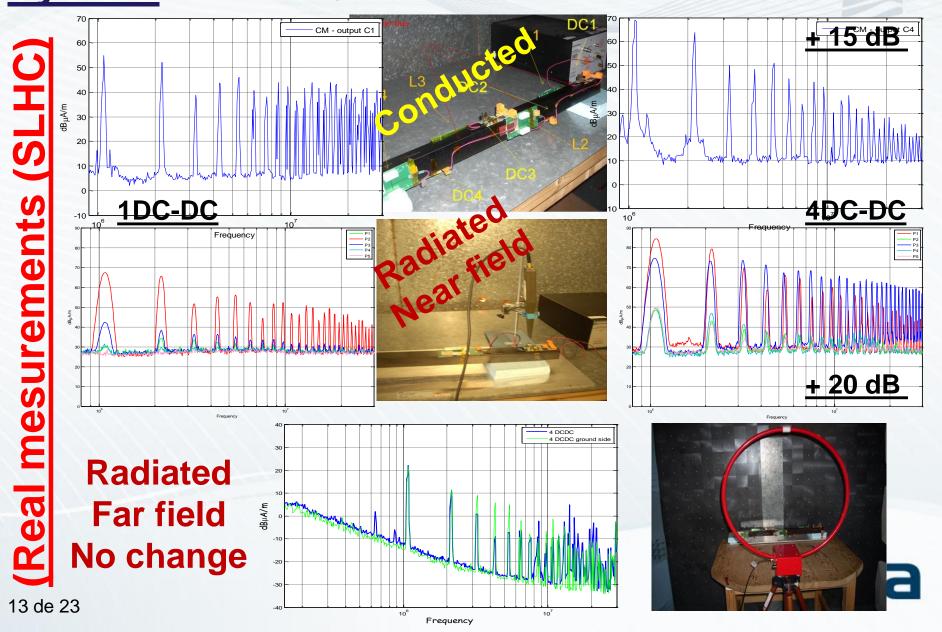
• 1.4kW

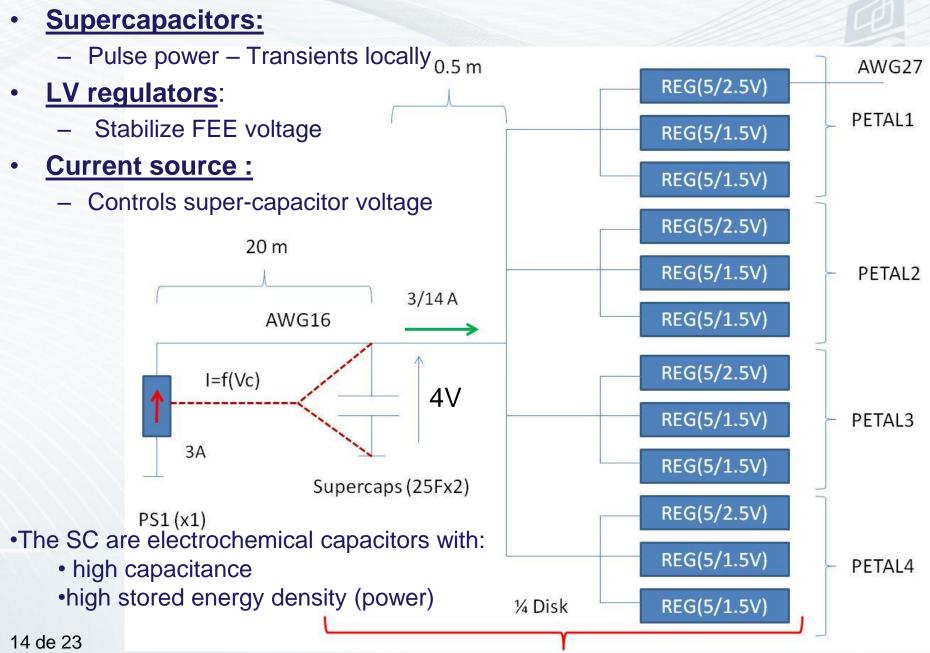
10 de 23

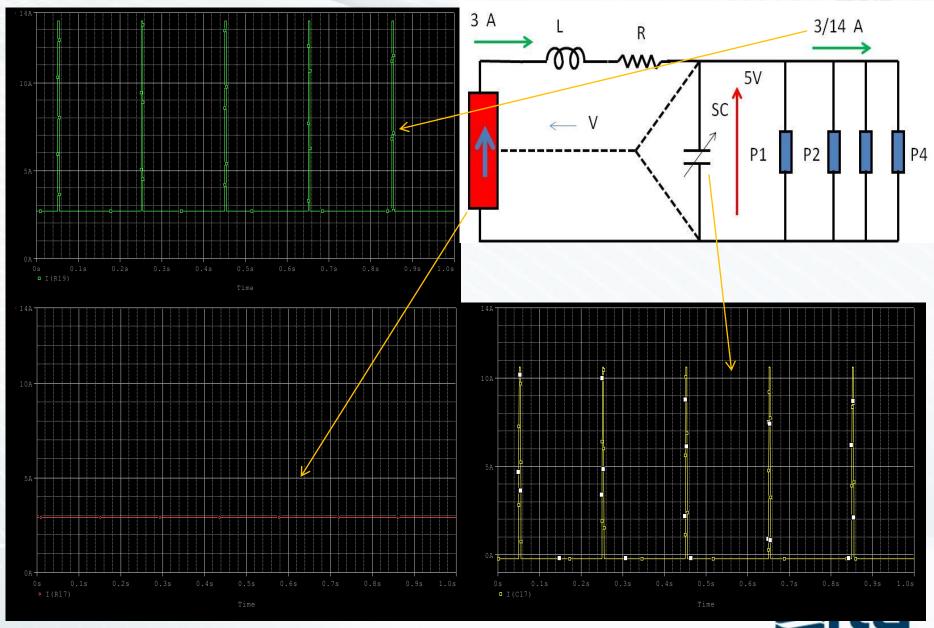
- A similar number of HV cable will be considered to keep the same granularity
 - 1 HV cable and HV power unit per ¼ disk
 - It will drive a few mA


• Power dissipation per ILC cycle (W): *DC-DC converter efficiency : 80%

<u>Group</u>	<u>FTD 3+</u>	<u>FTD4+</u>	<u>FTD5+</u>	<u>FTD6+</u>	<u>FTD7+</u>
FEE	4.6	5	5.4	5.6	3
CABLE	0.02	0.033	0.039	0.041	0.012
DCDC*	0.92	1	1.07	1.11	0.61
TOTAL (1/4)	5.55	6.04	6.48	6.74	3.69
TOTAL DISK	22	24.1	26	27	14.7
External cable (20m)	0.23	0.27	0.31	0.34	0.1

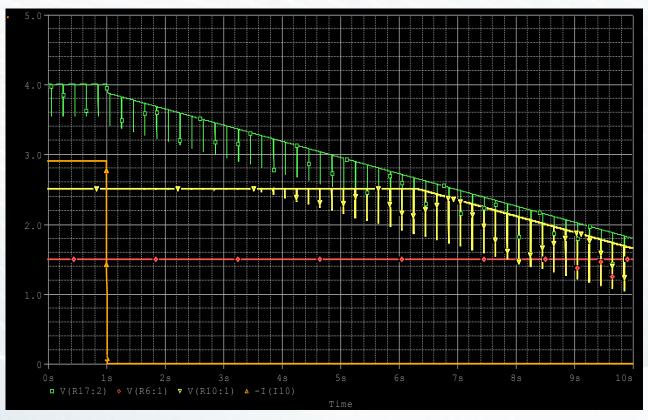



University of Texas, October 2012


- Important topics associated with DC-DC converters
 - <u>Material</u>
 - Shielding Main inductor.
 - Dynamic
 - Dynamic behavior: Negative impedance & Transients
 - EMI phenomena (Noise)
 - Conducted & Radiated

System · Increasing the number of units - Increase noise locally



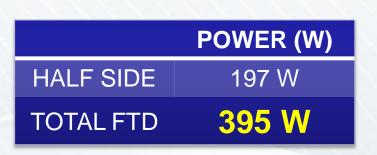


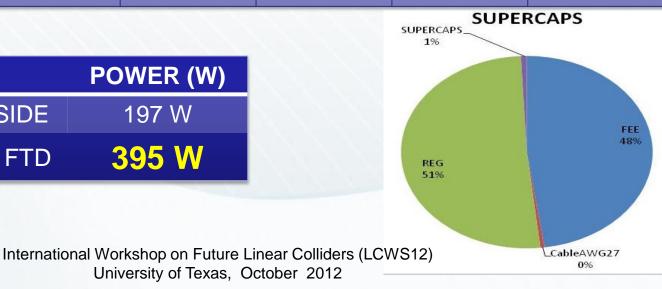
15 de 23

- Each pulse generates a voltage dip
 - It is mainly influenced by the ESR of the super-capacitors
 - Line impedance, too.
- Transient can be easily absorbed by the LV regulator
 - It should be a RAD tolerant component
- The voltage dips helps to decrease the power dissipated by LV reg.

- The high capacitance has two advantages:
 - It will protects the system in case mains failure Similar to UPS
 - It helps shutdown the system in a controlled way.
 - The dynamic response of primary power unit may be very slow
 - · Remote regulation of the supercap voltage will be easy

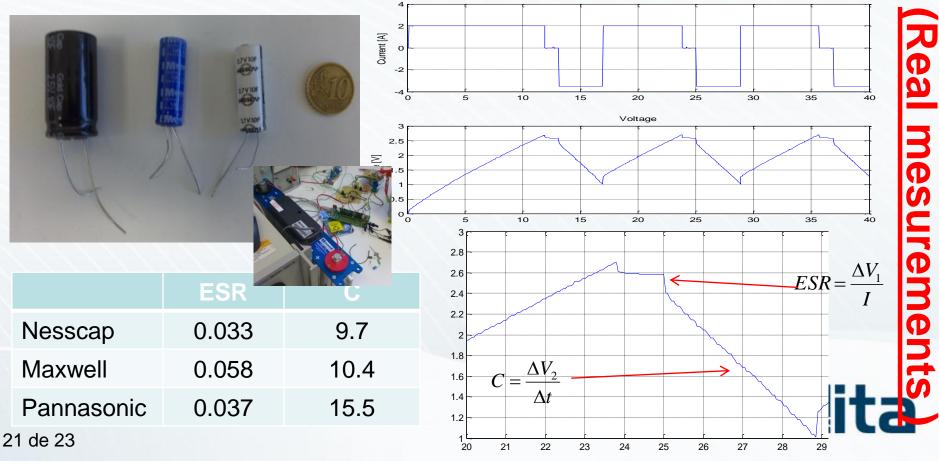
- The duration of the shut-down capability will depend on :
 - Capacitance
 - Voltage


- Power values per ¼ disk (power group 6)
 - Routing Inside each petal
 - 3 Regulators
 - 2 REG (4V -1.5V) / 1. A Pk 0.21A
 - 1 REG (4V- 2.5V) / 1.2 A Pk 0.25A
 - Short cabling Less than 0.2 meter (low voltage drop)
 - Per Group- ¼ disk
 - 2 Super-capacitors per (1/4 disk) C=25 F / V=4 V / Imax=11 A /Imin≈0
 - 1 Cable per disk
 - Max out current per cable around 2/3 A (defined by FEE stand-by)
 - Primary power unit
 - $I max = 3 A / V \approx 4V Power = 12W$
 - Total installed power required for FTD
 - Power 480 W
- A similar number of HV cable will be considered to keep the same granularity
- 1 HV cable and HV power unit per ¼ disk
 18 de 23

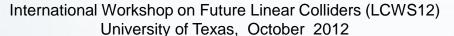


Power dissipated per ILC cycle (W): •

Group	FTD 3+	FTD4+	FTD5+	FTD6+	FTD7+
FEE	4.6	5	5.4	5.6	3
CABLE AWG 27	0.04	0.04	0.05	0.06	0.02
LV REG	4.9	5.41	5.74	5.96	3.24
SUPERCAPS	0.06	0.072	0.083	0.089	0.027
TOTAL (1/4)	9.63	10.6	11.3	11.7	6.4
TOTAL DISK	38.5	42.1	45	46.5	25.5
External cable (20m) – AWG 16	2.92	3.515	4	4.4	1.26


University of Texas, October 2012

- The most important element is the super-capacitors.
 It is new for HEP but not for industrial applications
- There are two elements that has to be analyzed in detail for HEP applications
 - Radiation issues
 - Cycling issues.
- Radiation issues
 - Type of radiation: Gammas & electrons
 - Total dose : Around 2 MRAd.
- Cycling issues (Reliability).
 - Super-capacitor should be able to operate more that 10 million of cycle per year (DC-DC too)
- A detailed test plan is on going to study both effects.

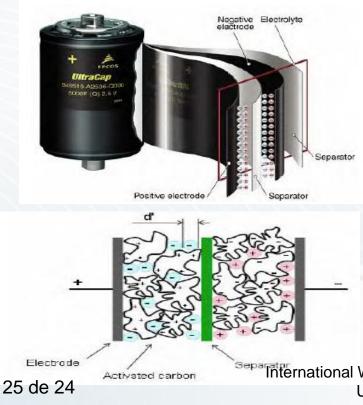

- Super-caps degradation is characterized by two effects
 - ESR degradation
 - Capacitive degradation
- This parameters will be characterized via constant current test
 - A power converter has been developed at ITA_{Current}

4. Conclusions

- A general overview of the two power supply distribution system for FTD has been presented
 - Each of them has some advantages and disadvantages

	DC-DC	Super-caps		
Power dissipation	228 W	395 W		
EMI phenomena	Yes	No*		
RAD tolerant	Yes	?		
Material budget	(240 DC-DC) ?	(80 SC) ?		
Reliability	?	?		
Power pulse applications	Not frequent	Yes		
Installed power	1.4 kW	0.48 kW		
Primary PS	≈ 36 W	≈ 15 W		
Mains protection (UPS effect)	No	Yes		

4. Conclusions


- Future plans
 - Super-capacitor option :
 - Radiation effects on super-capacitor : Test campaign
 - Reliability issues : Power cycling effects
 - Material budget
 - DC-DC option:
 - It is plan to follow the development of DC-DC converters RAD and magnetic field tolerant.
 - SLHC project CERN & RWTH Aachen
 - Simulation model improvement Transients
 - Power cycling effects
 - Material budget
- These topologies may be extended to any other sub-systems

BACKUP SLIDES

- · It is based on the installation of super-capacitor at FTD level
 - It will keep the transients high currents locally
- The super-capacitors are electrochemical capacitors with high capacitance and high stored energy density (power)
 - Double layer capacitor (DLC) is the most common one
 - ALU (anode)- active carbon -SEP- active carbon ALU(catode)

- Low nominal voltage (2.7V max),
- No memory effect & High efficiency
- State of charge depends on voltage and capacity. C = f(V)
- It may stand millions of cycles
- Temperature operation:
 - Between –35 °C y 65 °C

^{Deparator} International Workshop on Future Linear Colliders (LCWS12) University of Texas, October 2012