Occupancy for the CLIC_ILD TPC with Pad and Pixel Readout

Martin Killenberg

LCWS 2012 Arlington, Texas, 24. October 2012

The CLIC_ILD TPC

Same dimensions as the ILD $\ensuremath{\mathsf{TPC}}$

- Inner radius 395 mm (active area)
- Outer radius 1.739 mm (active area)
- $1 \times 6 \text{ mm}^2$ pad (default pad size)
- 224 pad rows (default pad size)
- T2K gas $(Ar/CF_4/iC_4H_{10} 95/3/2)$
- $v_{drift} = 79 \text{ mm}/\mu s$

Voxel size (3D space bucket):

- Pad size \times $t_{sample} \cdot v_{drift}$
- $\approx 1 \text{ mm} \times 6 \text{ mm} \times 2 \text{ mm}^*$

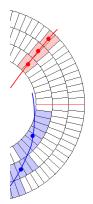
*With 40 Mhz readout frequency and $v_{drift} = 79 \text{ mm/}\mu s$

Beam parameters

	CLIC (3 TeV)	ILC (500 GeV)
Bunch spacing	0.5 ns	554 ns
Bunches per train	312	1312
Bunch train length	156 ns	727 µs
Bunch train repetition	50 Hz	5 Hz

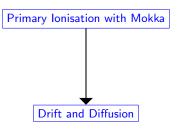
Readout time of the TPC $O(30 \ \mu s)$:

TPC integrates a full BT (physics and background)!


Beam induced backgrounds

- 300,000 incoherent e⁺e⁻ pairs per BX from beamstrahlung
- 3.2 $\gamma\gamma \rightarrow$ hadrons events per BX
- 1 beam halo muon per BX

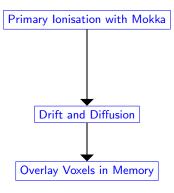
All occupancies calculated without safety factor!


Primary Ionisation with Mokka

Simulation

- Default Mokka driver places one hit in the middle of the pad row
 - Pad response not realistic for low angle tracks
 - Delta electrons and micro curlers also occupy voxels:
 - \Rightarrow Need detailed charge depositions
- $\Rightarrow Run Mokka TPC driver with step length limit of 200 \ \mu m$
 - Realistic ionisation clusters

Simulation and Digitisation

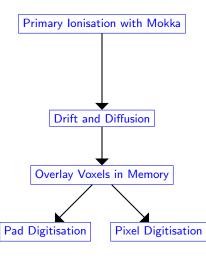

Drift and Diffusion

- Calculate number of electrons from energy in Mokka hit
- Drift each electron separately
- Displace according to diffusion

Why so detailed?

- Most clusters only have few (1, 2, 3) electrons
- Continuous Gaussian smearing is not very realistic
- ⇒ Displacing individual electrons is a better description of the fluctuations

Simulation and Digitisation


Voxelisation using 3D voxel map

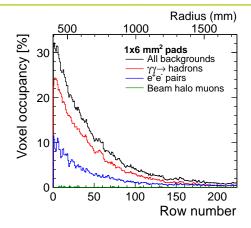
- Smear amplified charge with pad response
- Calculate fraction on each pad
- Put charge into corresponding voxel

Why so detailed?

- Realistic charge content of each pad and time bin
- Overlay different bunch crossings in memory

Simulation and Digitisation

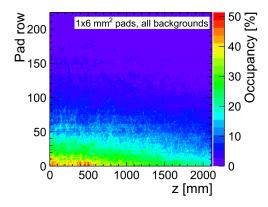
Digitisation

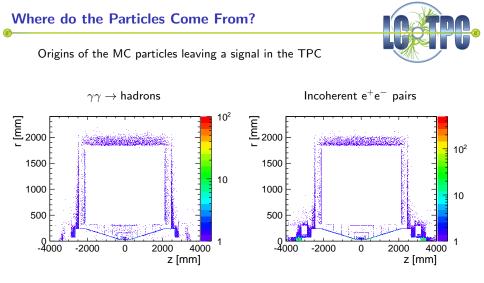

- Apply electronics shaping for each incoming voxel
- Calculate ADC values for each time sample
- Apply electronics thresholds
- Write out pixel or pad raw data

Why so detailed?

- Electronics shaping can affect the z-resolution and occupancy
- ADC dynamic range can affect overall performance

Occupancies are calculated from the digitised raw data


Occupancy for the Different Backgrounds


- Occupancy is up to 30 % for the inner pad rows (averaged over z and φ)
- Largest component is $\gamma\gamma \rightarrow$ hadrons (25 %)
- \bullet Incoherent e^+e^- pairs cause up to 10 % occupancy
- Beam halo muons are negligible

Occupancy in Dependence on *z*

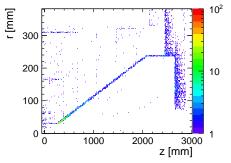
- \bullet Occupancy near the IP is up to 50 %
- $\bullet\,$ Near the readout (forward region) occupancy below 20 $\%\,$

Backscattered particles from all over the detector

Where do the Particles Come From? (zoomed)

Origins of the MC particles leaving a signal in the TPC

10²


10

4000

z [mm]

Incoherent e⁺e⁻ pairs

Hot regions:

- Inner region of the pointing beam pipe
- \sim 25 % directly from the IP (one pixel in the plot)

Hot regions:

0

1000

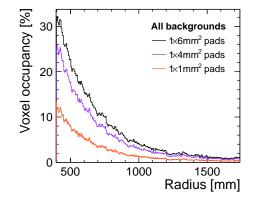
r [mm]

300

200

100

• BeamCal (low energetic photons) Can this be optimised with a different design?


2000

3000

• Inner region of the pointing beam pipe

Occupancy for Different Pad Sizes

- $\bullet~1{\times}1~\text{mm}^2$ reduces the occupancy to a tolerable level
- $1 \times 1 \text{ mm}^2$ cannot be implemented with current technology \rightarrow needs further R&D

Pixel Readout for a TPC

InGrid-like "TPCPix" readout

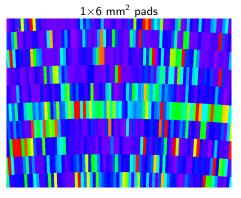
Simulate the "ideal" readout chip


- $\bullet\,$ Integrated micro mesh $\checkmark\,$
- $\bullet\,$ Time and charge per pixel $\checkmark\,$
- Fast shaping time (ADC per pixel) \checkmark
- $\bullet\,$ Unlimited multi-hit capability $\checkmark\,$
- Polya-like gas gain fluctuations (not impl. yet)
- Adjustable cross-talk (not impl. yet)

Detect every primary electron

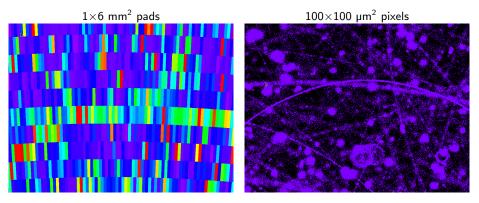
- Ultimate spatial resolution
- Best possible track separation (only limited by diffusion)
- $\bullet~$ Reject delta electrons $\Rightarrow~$ improve dE/dx and momentum resolution

Studies:

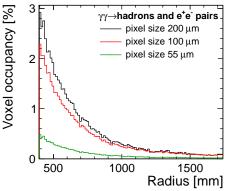

- Occupancy at CLIC (full bunch train of beam background)
- Momentum resolution
- dE/dx (planned)
- Tracking efficiency (requires full reconstruction)

Timepix chip with integrated micro mesh

Event Displays



 $\approx 75\times 60~mm^2$


Event Displays

 $\approx 75\times 60~mm^2$

Occupancy for Different Pixel Sizes

• Factor 4 in voxel occupancy between 55 μ m and 100 μ m pixels \Rightarrow Each voxel is only occupied by one electron / cluster

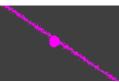
- \Rightarrow 55 μm and 100 μm pixels can resolve individual electrons
- $\bullet\,$ Factor 1.3 between 100 μm and 200 μm pixels
 - \Rightarrow More than one electron / cluster per voxel for 200 μm pixels

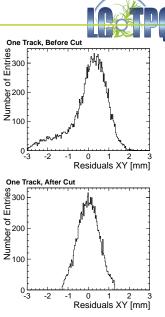
Consistent with expectations (primary cluster distance, diffusion)

Momentum Resolution with Pixel Readout

"Reconstruction":

No pattern recognition for pixels available


- Current Kalman filters work layer (pad row) based
- Hough-transform does not work (too many pixels)


Current solution for single tracks without background and noise

- Fit a helix to all recorded pixels
- Treat all pixels equally (digital readout, charge information not used)
- Perform outlier rejection (delta electrons)

 \rightarrow cut at 2.5 RMS of residual distribution

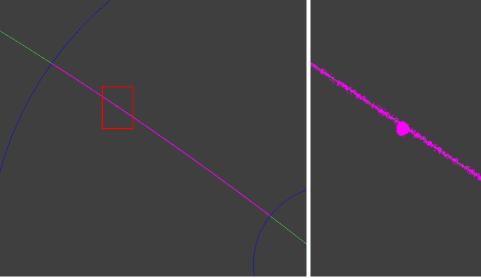
Iterate

Momentum Resolution with Pixels and Pads 1000 muons from the IP per energy 10⁻² $\sigma(\Delta p_{T}^{-}/p_{T}^{2})$ [GeV⁻¹] σ_{0}^{-1} pixels pads 10-4 10-5 10^{2} 10^{3} 10 p₋ [GeV] • Pixel momentum resolution@200 GeV $\sigma(\Delta p_T/p_T^2) = 7.3 \cdot 10^{-5}$ $(100 \times 100 \ \mu m^2$ pixels, simple helix fit)

• Slightly better than resolution for pads($\sigma(\Delta p_T/p_T^2) = 7.5 \cdot 10^{-5}$ @200 GeV) 1 × 6 mm² pads, Mokka driver in default mode + MarlinReco / LEPTracking (Kalman Filter)

Difficult TPC conditions at CLIC

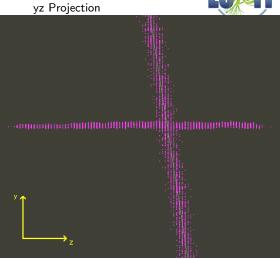
- Occupancy with default pad readout (1×6 mm²) is up to 30 % in the inner pad rows (ALICE TPC is designed to work up to 40 %)
- Mainly $\gamma\gamma \rightarrow$ hadrons, also micro-curlers from incoherent e⁺e⁻ pairs
- TPC pixel readout is a promising option
 - Occupancy below 3 %
 - Momentum resolution comparable or better than for pad readout
 - dE/dx to be studied
 - Pattern recognition and amount of data have to be addressed

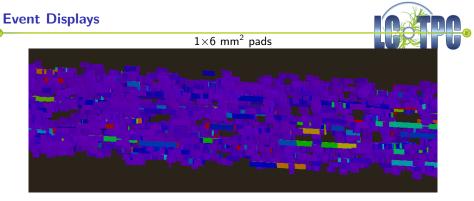


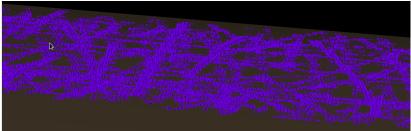
Backup

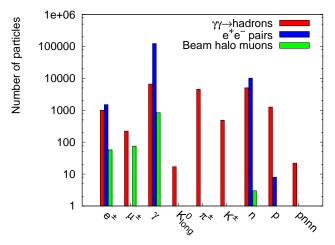
Event Displays

xy Projection

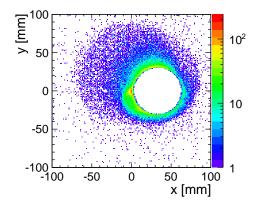



Event Displays




Binning in z due to 40 MHz readout frequency $\stackrel{\scriptscriptstyle }{=} 2 \text{ mm}$ drift distance

$100{\times}100~\mu\text{m}^2$ pixels



	From source [†]		Total	
Background	Count	$E_{ m dep}$ [GeV]	Count	$E_{ m dep}$ [GeV]
$\gamma\gamma ightarrow hadrons$	4770	4.06	19154	11.0
incoherent e^+e^- pairs	176	0.0717	134908	15.9
beam halo muons	75	0.107	973	0.304

[†]IP or beam halo muons scoring plane

Backscattering Particles from the BeamCal

Origins of the MC particles leaving a signal in the TPC

