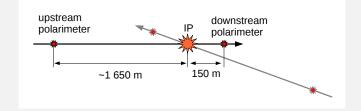
Challenges for Polarimetry at the ILC Spin Tracking Studies

Moritz Beckmann, Jenny List

DESY - FLC

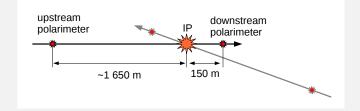
LCWS 2012, Arlington, TX, USA

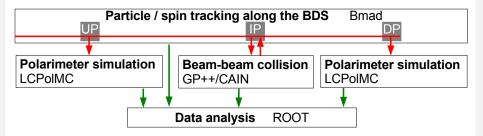
October 25, 2012



Bundesministerium für Bildung und Forschung

Introduction: Polarimetry at the ILC

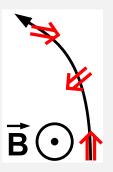

• Two laser Compton polarimeters per beam in the beam delivery system (BDS)


- Polarimeters measure with 0.25 % systematic uncertainty (goal)
- What happens between polarimeter and IP?

Introduction: Polarimetry at the ILC

• Two laser Compton polarimeters per beam in the beam delivery system (BDS)

- Polarimeters measure with 0.25 % systematic uncertainty (goal)
- What happens between polarimeter and IP?
- In addition: calibration with average polarization from collision data (up to 0.1%)
- Must understand spin diffusion/depolarization to $0.1\,\%$

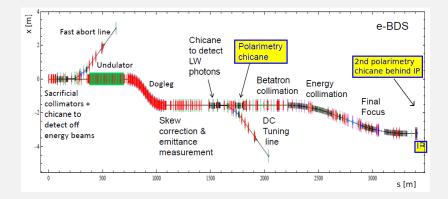

UP/DP: up-/downstream polarimeter

Framework could be used with different input also for other machines, e. g. CLIC

Introduction: Principles of Spin Propagation

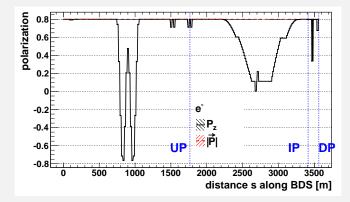
- Spin propagation in electromagnetic fields is described by T-BMT equation (semiclassical)
- Approximation $(\vec{B}_{\perp} \text{ only})$ for illustration: spin precession

$$heta_{spin} = \underbrace{\left(rac{\mathbf{g}-2}{2} \cdot rac{\mathbf{E}}{\mathbf{m}} + 1
ight)}_{\approx 568} \cdot heta_{orbit}$$



Introduction: Principles of Spin Propagation

- Spin propagation in electromagnetic fields is described by T-BMT equation (semiclassical)
- Approximation $(\vec{B}_{\perp} \text{ only})$ for illustration: spin precession

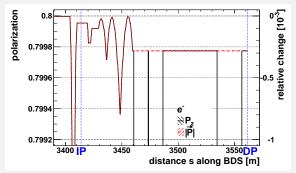

$$\theta_{spin} = \underbrace{\left(\frac{g-2}{2} \cdot \frac{E}{m} + 1\right)}_{\approx 568} \cdot \theta_{orbit} \qquad \mathbf{B} \left(\mathbf{P}_{x}\right)$$
• Polarization vector $\vec{P} = \begin{pmatrix} P_{x} \\ P_{y} \\ P_{z} \end{pmatrix}$ with polarization $\left|\vec{P}\right|$

Introduction: ILC Beam Delivery System

Latest available beamline design (SB2009_Nov10 lattice)

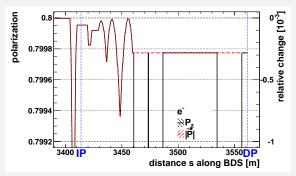
Spin Propagation through BDS (Idealized Lattice)

UP/DP: up-/downstream polarimeter

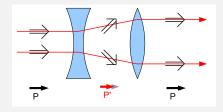

- 1000 runs with random bunches, 10000 sim. particles each
- Drawn: median $\pm 1\sigma$
- Perfect magnet alignment, no collision effects

Moritz Beckmann (DESY)

LCWS

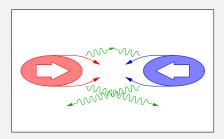

Oct 25, 2012

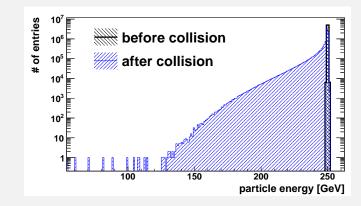
Spin Fan-Out



Only minor spin fan-out in quadrupoles

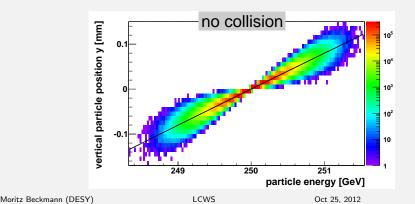
Spin Fan-Out


Only minor spin fan-out in quadrupoles

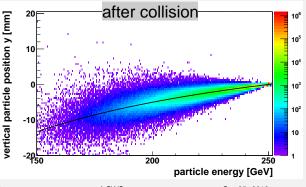

Moritz Beckmann (DESY)

Simulation of Collision Effects (GP++):

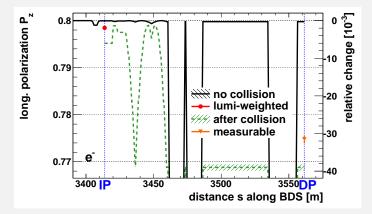
- T-BMT precession: deflection from colliding bunch ($\sim 10^{-4}~{\rm rad})$
- Sokolov-Ternov: spin flip by emission of beamstrahlung


• Energy loss by beamstrahlung:

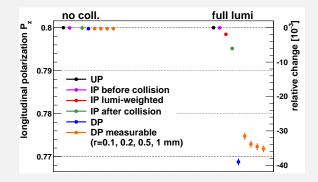
- Spin precession $\propto E$
 - \Rightarrow Spin fan-out due to energy spread


Collision Effects: Energy Loss vs. Laser-Spot

- Laser-spot size at Compton IP only $\sim 0.1-1\,mm$
- chicane ⇒ dispersion (black: reference particle)
- Without collision: 0.124 % beam energy spread Entire beam within laser-spot √


Collision Effects: Energy Loss vs. Laser-Spot

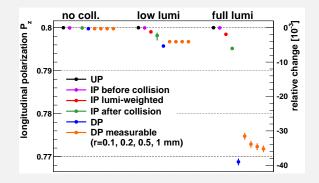
- Laser-spot size at Compton IP only $\sim 0.1-1\,mm$
- chicane ⇒ dispersion (black: reference particle)
- After collision: Off-energy particles evade laser-spot
- Downstream polarimeter needs detailed investigation (energy and polarization correlated!)



Moritz Beckmann (DESY)

- Collisions, but still perfect alignment
- Crossing angle 14 mrad, bunches crabbed

- Much stronger spin fan-out
- Polarization within 0.1 mm laser-spot different: "measureable"



- What does the measurement tell us about the polarization at the IP?? $\Delta P_z \sim 2.5 \%$
- Can we trust the simulation to calculate back? More details to come: detector magnets, misalignments
- Uncertainty in DP laser-spot size/position $\Rightarrow \Delta P_z = O(0.1\%)$

Moritz Beckmann (DESY)

I CWS

Low luminosity sample (switched off bunch crabbing):

- Collision effects and also their consequences reduced
- Downstream measurement less affected by collision effects and less dependent on laser-spot size/position

Conclusion

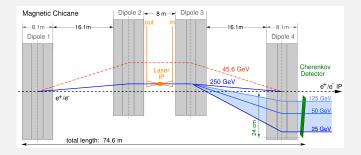
- A spin tracking framework for high energy linear colliders including collision effects has been set up
- ILC: understanding of polarization to permille-level required
- Precision goals for upstream measurement seem achievable

Conclusion

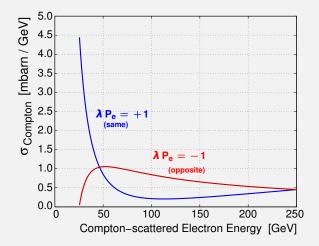
- A spin tracking framework for high energy linear colliders including collision effects has been set up
- ILC: understanding of polarization to permille-level required
- Precision goals for upstream measurement seem achievable
- Downstream polarimeter struggles fiercely with collision effects:
 - **High-precision simulation** including **all** effects required at high luminosities to obtain polarization at IP from data
 - Measurement highly sensitive to size/position of laser-spot
 - **Idea**: determine lumi-weighted polarization rather/also from upstream polarimeter and luminosity measurement?

Conclusion

- A spin tracking framework for high energy linear colliders including collision effects has been set up
- ILC: understanding of polarization to permille-level required
- Precision goals for upstream measurement seem achievable
- Downstream polarimeter struggles fiercely with collision effects:
 - **High-precision simulation** including **all** effects required at high luminosities to obtain polarization at IP from data
 - Measurement highly sensitive to size/position of laser-spot
 - **Idea**: determine lumi-weighted polarization rather/also from upstream polarimeter and luminosity measurement?
- Downstream polarimeter needed nevertheless:
 - Measure depolarization without collision effects / calibrate UP
 - Measure additional depolarization at low luminosities to test simulations


Thanks for your attention!

Thanks for support and useful discussions to:


- David Sagan (Cornell U.)
- Deepa Angal-Kalinin (Daresbury Lab.)
- Anthony Hartin, Mathias Vogt, Nick Walker (DESY)
- Andrei Seryi (JAI)
- Kenneth Moffeit, Yuri Nosochkov, Michael Woods (SLAC)
- Jeff Smith (formerly SLAC)
- und many others...

Compton Polarimeters: Principles

- Compton scattering with polarized laser: \sim 1500 electrons per bunch
- Measure energy spectrum of scattered electrons
- Energy distribution \rightarrow spatial distribution
- Cherenkov gas detector counts electrons per channel

Compton Polarimeters: Principles

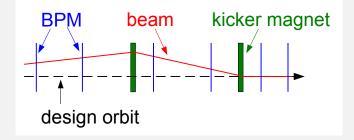
- σ_{Compton} depends on polarization (laser \times beam)
- Measure asymmetry and compare to analyzing power (predicted asymmetry for 100 % polarization)

Moritz Beckmann (DESY)

Compton Polarimeters: Systematic Errors

Goal: relative systematic error on measurement $<0.25\,\%$ (SLC polarimeter: $0.5\,\%)$

- Detector linearity: contribution of $\sim 0.1-0.2\,\%$ (goal) Prototype tests ongoing . . .
- Laser polarization: $\sim 0.1\,\%$ \checkmark


Goal: relative systematic error on measurement $<0.25\,\%$ (SLC polarimeter: $0.5\,\%)$

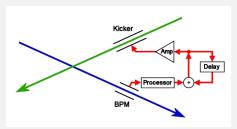
- Detector linearity: contribution of $\sim 0.1-0.2\,\%$ (goal) Prototype tests ongoing . . .
- Laser polarization: $\sim 0.1\,\%$ \checkmark
- Analyzing power: $\sim 0.1\,\%$ (UP: \checkmark , DP: ?)
 - Detector alignment: can be determined from data (√)
 0.5 mm precision sufficient
 - Alignment of magnets negligible compared to detector √ Field inhomogeneities? to be investigated
 - Disrupted electron beam at downstream polarimeter:
 - Dependence on laser-spot size and position: ??
 - Beam energy spread no concern for small laser-spot sizes thanks to dispersion \checkmark

- Every element is shifted/rotated randomly in/about all directions/axes
- Gaussian-distributed random numbers, $\sigma=$ 10 $\mu {
 m m}/\mu{
 m rad}$
- Static and time-dependent misalignments

- Every element is shifted/rotated randomly in/about all directions/axes
- Gaussian-distributed random numbers, $\sigma=$ 10 $\mu {
 m m}/\mu {
 m rad}$
- Static and time-dependent misalignments
- Simplified orbit correction with kicker magnets and fast feedback at IP

Misalignments: Correction with Kicker Magnets

- \sim 40 kicker magnets and many more Beam Position Monitors spread over BDS
- Calculate required kicks from measurements (SVD)
- Automatic correction of spin alignment as well?

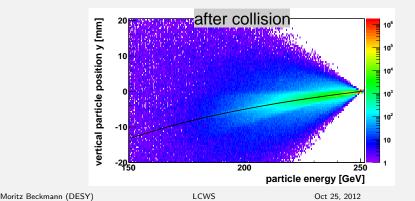

Strategy here:

- Interested in **effects of kicks on polarization**, not in sophisticated correction algorithm
- Get orbit corrected **somehow** with kickers such that
 - beam does no go lost
 - approximations (small coordinates) still hold

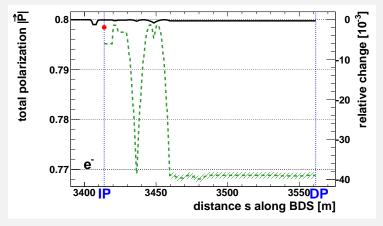
Misalignments: Orbit Correction Strategy

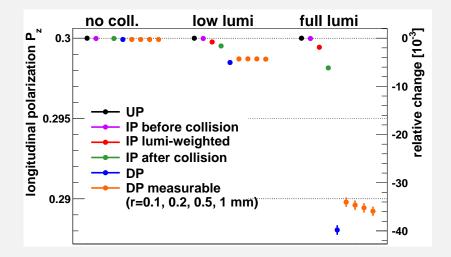
Strategy here:

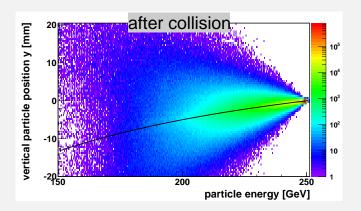
- Interested in **effects of kicks on polarization**, not in sophisticated correction algorithm
- Get orbit corrected **somehow** with kickers such that
 - beam does no go lost
 - approximations (small coordinates) still hold
- Fake correction at IP: shift and rotate bunch coordinates to 0.1σ precision (goal), adjust beam size


Misalignments: Spin Propagation

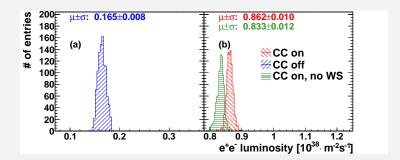
- Misalignments reduce luminosity \Rightarrow less collision effects
- Measured polarization depends on laser-spot size and position


Collision Effects: Energy Loss vs. Laser-Spot

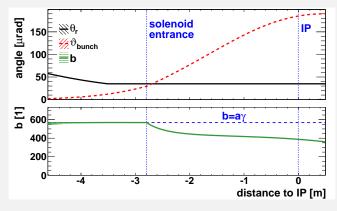

- Laser-spot size at Compton IP only $\sim 100\,\mu\text{m} 1\,\text{mm}$
- chicane ⇒ dispersion (black: reference particle)
- After collision, bunch crabbing switched off


Collision Effects: Spin Propagation (Polarization)

- Total polarization affected likewise
- Polarization decrease in chicanes: fan-out due to energy spread

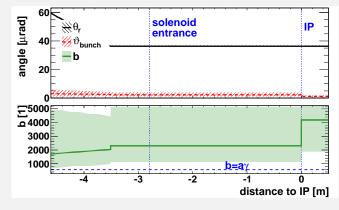


Collision & Misalignments: Downstream Polarimeter Measurement


Luminosity

- Design values $1.8(1.5) \cdot 10^{38} \text{ m}^{-2} \text{s}^{-1}$ (without waist shift)
- Need to improve tuning of grid parameters in GP++
- **Does not change statement of this talk** (effects might just get stronger for higher luminosities)

Polarization correction by angle measurement?


- Detector solenoid and anti-DID
- θ_r : angular spread within bunch
- Solenoid field invalidates " B_{\perp} only" approximation
- Still sharp value for $b (\vartheta_{pol} = b \cdot \vartheta_{bunch})$ due to ideal conditions (no misalignments)

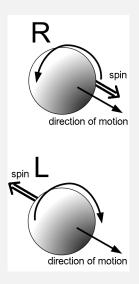
Moritz Beckmann (DESY)

Polarization correction by angle measurement?

- This plot without detector magnets
- Small misalignments $(2\mu m / 2\mu rad)$ make correction for incident angle impossible, since there is no more simple correlation between angles of bunch and polarization vector
- "Steps" due to correction kickers with zero length

Moritz Beckmann (DESY)

Polarization


 Here: longitudinal polarization P_z (along beam axis)

•
$$P_z = p_R - p_L \in [-1, +1]$$

• Beam with 90% R (and thus 10% L) \rightarrow 80% longitudinal polarization

• More general: polarization vector

$$\vec{P} = \begin{pmatrix} P_x \\ P_y \\ P_z \end{pmatrix}$$
 with polarization $\left| \vec{P} \right|$

