.....

Jases studied

Simulation Resu

Conclusion and

Feed forward with GM sensors

Y. Renier ,J. Pfingstner, K. Artoos,D. Schulte, R. Tomas (CERN)
A. Jeremie (LAPP)

LCWS 2012 25 of October 2012

Feed forward with GM sensors

Y. Renier

Introduction

Cases studied

Simulation Resul

Conclusion and

Headlines

Introduction

Cases studied

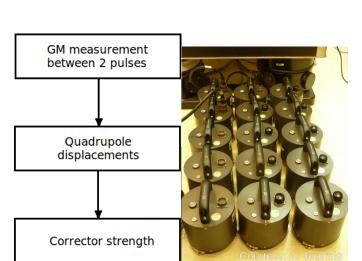
Simulation Results

Introduction

Cases studied

Simulation Results

Conclusion and


Headlines

Introduction

Cases studied

Simulation Results

Concept of Feed Forward with GM Sensors

Feed forward with GM sensors

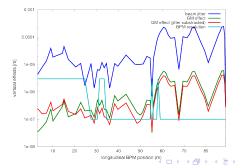
Y. Renier

Introduction

Cases studied

Simulation R

onclusion and an


Goal

 Detect Ground Motion (GM) effect on beam trajectory.

Motivation

- GM sensors are usually only compared to other GM sensors
- It would demonstrate possibility to make a feed forward with GM sensors.
- Feed forward would allow trajectory correction based on GM measurements in CLIC.
- Feed forward would allow big saving (avoid quadrupole stabilization in CLIC)

- Evaluate GM effect on BPM readings from GM sensor measurements (minus the part removed by jitter subtraction).
- Compare these two residuals.

Introduction

Cases studied

Simulation Re

Conditions

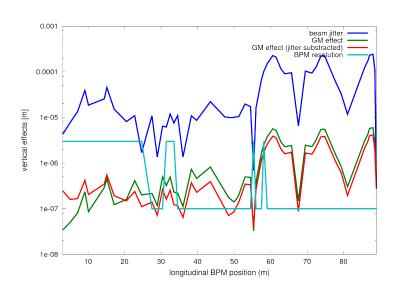
- ATF2 nominal lattice (sextupoles off).
- ▶ Elements misaligned initially (RMS=100 μ m).
- Trajectory is then steered.
- Ground Motion (GM) model based on measurements.
- Elements are displaced by the amount of relative motion compared with the 1st element.
- Incoming beam jitter.
- ▶ Quadrupoles errors of $\frac{dK}{K} = 10^{-4}$ included.
- BPM resolution included.
- GM measurement included (sensors TF included).

minoduction

Cases studied

Simulation Results

onclusion and


Headlines

Introduction

Cases studied

Simulation Results

Nominal Lattice

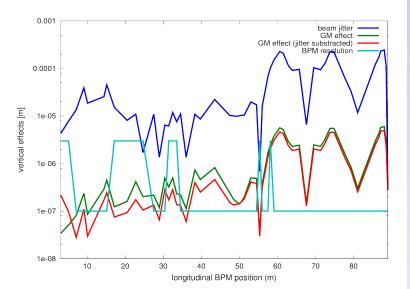
Feed forward with GM sensors

Y. Renier

Introduction

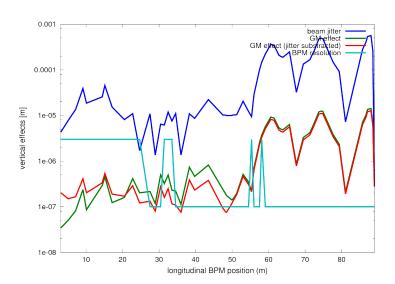
Cases studied

Conclusion and

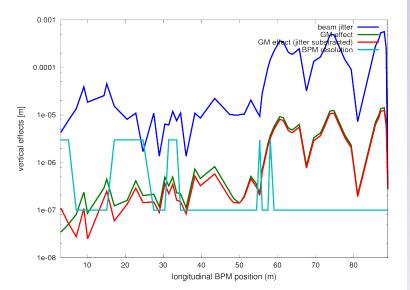


Introduction

Cases studied


Simulation Results

Simulation Resul


Conclusion a

Introduction

Cases studied

Conclusion and

Feed forward with GM sensors

Y. Renier

Introduction

Cases studied

Simulation Results

Conclusion and Plan

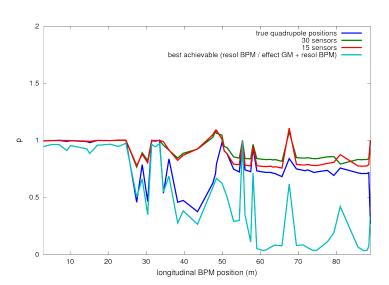
Headlines

Introduction

Cases studied

Simulation Results

Evaluation of the results


- ▶ R₁ is the GM effect obtained from GM sensors.
- R₂ is the GM effect obtained from BPMs.

$$p = \frac{||R_1 - R_2||_2}{||R_1 + R_2||_2}$$

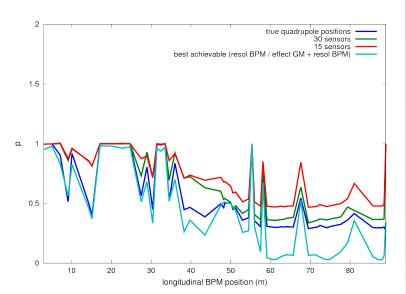
.

- ▶ p = 1 if R_1 and R_2 independent.
- ▶ p = 0 if $R_1 = R_2$ (ideal case).
- ► The lower p is, the best is the determination from the GM sensors.

Nominal Lattice

Feed forward with GM sensors

Y. Renier


Introduction

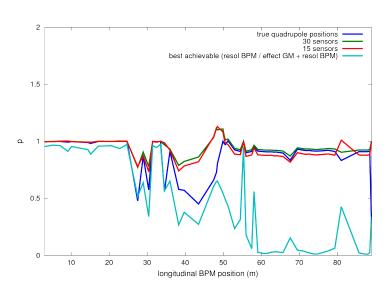
Cases studied

Simulation Results

Nominal Lattice with 5 Improved BPMs

Feed forward with GM sensors

Y. Renier


Introduction

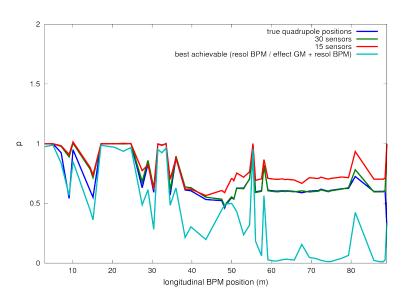
Cases studied

Simulation Results

Ultra Low β Lattice

Feed forward with GM sensors

Y. Renier


Introduction

Cases studied

Simulation Results

Ultra Low β Lattice with 5 Improved BPMs

Feed forward with GM sensors

Y. Renier

Introduction

acoc studied

Simulation Results

Results Summary

Feed forward with GM sensors

Y. Renier

Introduction

Cases studied

Simulation Results

	p in Matching Quads	p in FF
Nominal	0.8	0.75
Ultra Low	0.75	0.9
Nominal (good BPMs)	0.75	0.5
Ultra Low (good BPMs)	0.6	0.7

Feed forward with GM sensors

Y. Renier

ntroduction

Cases studied

Simulation Results

Conclusion and Plan

Headlines

Introduction

Cases studied

Simulation Results

Conclusion

- Beam jitter subtraction is critical.
- Detection seems difficult but should be feasible with the current configuration.
- Great improvement with the 5 first BPMs upgraded.
- ▶ Ultra Low β do not really help (higher sensitivity to errors)

Plan

- 15 sensors available and acquisition system is ready.
- Testing early November at LAPP.
- Then ship everything to ATF.
- Hope for first measurements at ATF in December.