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WHAT DO WE DO WITH IT?
• Come up with what its mass means? 

• Passé... done last December!

• Fit it to death? 

• Follow the crowd at all???

• Explain small discrepancies? 

•Do you hear the ambulance coming???

• Invert the problem and see if there were any predictions for 
BSM Higgs phenomenology BEFORE the LHC found what 
they did...



WHAT ELSE IS A HIGGS AND A 
LITTLE BSM GOOD FOR?

EWBG!



BARYOGENESIS

•Many ideas out there

• Leptogenesis

• Affleck-Dine

• Tying Dark Matter and Baryon Asymmetry

• Simpler possibility, do it without “new” high scale physics
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Baryogenesis and Leptogenesis

Mark Trodden
Department of Physics, Syracuse University, Syracuse, NY 13244-1130, USA.

The energy budget of the universe contains two components, dark matter and dark energy, about

which we have much to learn. One should not forget, however, that the baryonic component presents

its own questions for particle cosmology. In the context of cosmology, baryons would have anni-

hilated with their antiparticles in the early universe, leaving a negligible abundance of baryons, in

disagreement with that observed. In this general lecture, delivered at the SLAC 2004 Summer Sci-

ence Institute, I provide an overview of the central issue and the general principles behind candidate

models. I also briefly discuss some popular examples of models that are firmly rooted in particle

physics.

I. INTRODUCTION

The audience for this talk was extremely diverse, ranging from beginning graduate students, through experts in

subfields of physics somewhat distinct from the subject matter of my talk, to baryogenesis experts. My brief was to

present an overview of the main issues facing baryogenesis, accessible to all members of the audience. The original

talk was an hour long, and I attempted to stay true to the organizers’ requests regarding the level. In writing up

these proceedings, I have taken the opportunity to flesh out some of the topics with considerably more detail, drawing

heavily from my two review articles [1, 2].

The problem of the baryon asymmetry of the universe is a classic problem of particle cosmology. Particle physics

has taught us that matter and antimatter behave essentially identically, and indeed the interactions between matter

and antimatter are the focus of successful terrestrial experiments. On the other hand, cosmology teaches us that the

early universe was an extremely hot, and hence energetic, environment in which one would expect equal numbers

of baryons and antibaryons to be copiously produced. This early state of the universe stands in stark contrast to

what we observe in the universe today. Direct observation shows that the universe around us contains no appreciable

primordial antimatter. In addition, the theory of primordial nucleosynthesis (for a review see [3]) allows accurate

predictions of the cosmological abundances of all the light elements, H, 3He, 4He, D, B and 7Li, while requiring only

that, defining nb(b̄) to be the number density of (anti)-baryons and s to be the entropy density,

2.6 × 10−10 < η ≡
nb − nb̄

s
< 6.2 × 10−10 , (1)

(see, for example, [4]). Very recently this number has been independently determined to be η = 6.1×10−10 +0.3×10−10

−0.2×10−10

from precise measurements of the relative heights of the first two microwave background (CMB) acoustic peaks by

the WMAP satellite [5]. Alternatively we may write the range as

0.015(0.011) <∼ ΩB h2 <∼ 0.026(0.038) , (2)

where ΩB is the proportion of the critical energy density in baryons, and h parametrizes the present value of the

Hubble parameter via h = H0/(100 Km Mpc−1 sec−1).

The standard cosmological model cannot explain the observed value of η. To see this, suppose that initially we

start with η = 0. At temperatures T <∼ 1 GeV the equilibrium abundance of nucleons and antinucleons is

nb

nγ
%

nb̄

nγ
%
(mp

T

)3/2
e−

mp
T . (3)

As the universe cools, the number of nucleons and antinucleons decreases as long as the annihilation rate Γann %
nb〈σAv〉 is larger than the expansion rate of the universe H % 1.66 g1/2

∗
T 2

mp
. The thermally averaged annihilation



BARYOGENESIS

• Sakharov conditions

• B violation (already in SM: Sphalerons)

• CP violation (already in SM: obvious...)

• departure from thermal equilibrium (already in SM: 
EW phase transition)
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Electroweak Baryogenesis!



FACTORIZED EWBG

Out of Eq. Caclulation Baryon Asymmetry Calculation

Hard...Straightforward

The free energy increases quadratically with the fermion number density and the transitions
which increase nB+L are energetically disfavoured with respect to the ones that decrease
the fermion number. If these transitions are active for a long enough period of time, the
system relaxes to the state of minimum energy, i.e. nB+L = 0: any initial asymmetry in
B + L relaxes to zero.

To address this issue more quantitatively, one has to consider the ratio between the
transitions with δNCS = +1 and the ones with δNCS = −1

Γ+

Γ−
= e−∆f/T , (212)

wheer ∆f is the free energy difference between the two vacua. If we define Γsp to be the
average between Γ+ and Γ−, we may compute the rate at which the baryon number is
washed out [10]

dnB+L

dt
= Γ+ − Γ− " −

13

2
NF

Γsp

T 3
nB+L. (213)

Equation (213) is crucial to discuss the fate of the baryon asymmetry generated at the GUT
scale and is called Master equation.

Let us now consider temperatures much above the electroweak phase transition, T #
MW . Baryon number violation processes are active at very high temperatures if the rate
207) is smaller than the expansion of the Universe

Γsp

T 3 ∼> H ⇒ T ∼< α4
W

MP

g1/2
∗

∼ 1012 GeV. (214)

If so, any preexisting asymmetry in B + L is erased exponentially with a typical time scale
τ ∼ 2NF T 3/13Γsp.

Let us now consider temperatures T ∼ MW when the electroweak phase transition is
taking place and the Higgs VEV 〈φ(T )〉 is not zero. Baryon number violation processes
are out-of-equilibrium if, again, the rate (202) is smaller than the expansion rate of the
Universe. This translates into the bound on Esp(T ) [10]

Esp(Tc)

Tc
∼> 45, (215)

wheer we have indicated by Tc the critical temperature at which the electroweak phase
transition is taking place. Using the relation (179) this bound may be translated into a
bound on 〈φ(Tc)〉

〈φ(Tc)〉
Tc

∼> 1. (216)

Any generation of the baryon asymmetry at the electroweak phase transition requires –
therefore – a strong enough phase transition, that is able to produce a VEV for the Higgs
field larger than the critical temperature. We will come back to this point later on.

6.5.1 A crucial point

In all the considerations leading to Eq. (213) we have been assuming that all the charges
which are conserved by the interactions of the particles in the plasma (Q, B − L, Li,

51

tunneling,
quantum transport,

hydronamics 



NEED TO UNDERSTAND V(T)
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Figure 1: Schematic thermal Higgs potential during a first-order phase transition. (a) At
high temperatures the thermal potential stabilizes the Higgs at the origin. (b) A local
minimum forms away from the origin at some temperature around the weak scale. (c) At
T = Tc, this minimum at � = vc is degenerate with the symmetric vacuum. (d) At some
nucleation temperature Tn somewhat below Tc, the tunneling probability within the volume
of the universe approaches one and the Higgs transitions to the symmetry-breaking vacuum
(indicated schematically with red arrow).

are mostly separate from the factors that enter the next stage of the calculation.
Calculating the amount of created baryon density ⇢B involves solving a di↵usion equation

(see, for example, [23]):

@t⇢B(x)�Dr2⇢B(x) = ��wsFws(x)[nL(x) +R⇢B(x)]. (2.1)

D is the di↵usion coe�cient for baryon number. The factor �wsFws(x) multiplying both the
source and relaxation terms is essentially the space-time varying sphelaron rate of converting
chiral asymmetry to baryon asymmetry. �ws is the sphelaron rate at zero Higgs VEV (at
the critical temperature) and is determined from lattice calculations [40]. The sphelaron
transition profile Fws(x) reflects the attenuation of that rate with nonzero Higgs VEV, and
approaches one and zero asymptotically far in front of and behind the bubble wall, respec-
tively. nL(x) is the number density of left-handed doublet fields created by CP -violating
processes in the bubble wall, and acts as a seed of baryon number. It must therefore be
nonzero around the phase boundary. R is a relaxation coe�cient representing washout.

The parameters D, �ws and R depend mostly on SM-physics. The transition profile
Fws is derived from the spatially- and time-varying profile of the Higgs VEV at the phase
transition (i.e. the moving bubble wall), which in turn is computed from the above explained
tunneling calculation. (In fact, Fws(x) ! 0 in the broken phase is due to vc/Tc >⇠ 1.) This
leaves nL(x) as the final input to be computed.

nL(x) essentially arises due to di↵erent reflection/transmission of LH and RH fermions o↵
the bubble wall. This results in a di↵usion of chiral charge ahead of the advancing bubble wall
into the symmetric phase which drives the production of baryon number [41]. Fermions with
CP -violating interactions beyond the Standard Model are required, and their parameters
are most important in calculating nL(x) and hence the produced baryon asymmetry once we
assume a strong enough electroweak phase transition.
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transition profile Fws(x) reflects the attenuation of that rate with nonzero Higgs VEV, and
approaches one and zero asymptotically far in front of and behind the bubble wall, respec-
tively. nL(x) is the number density of left-handed doublet fields created by CP -violating
processes in the bubble wall, and acts as a seed of baryon number. It must therefore be
nonzero around the phase boundary. R is a relaxation coe�cient representing washout.

The parameters D, �ws and R depend mostly on SM-physics. The transition profile
Fws is derived from the spatially- and time-varying profile of the Higgs VEV at the phase
transition (i.e. the moving bubble wall), which in turn is computed from the above explained
tunneling calculation. (In fact, Fws(x) ! 0 in the broken phase is due to vc/Tc >⇠ 1.) This
leaves nL(x) as the final input to be computed.

nL(x) essentially arises due to di↵erent reflection/transmission of LH and RH fermions o↵
the bubble wall. This results in a di↵usion of chiral charge ahead of the advancing bubble wall
into the symmetric phase which drives the production of baryon number [41]. Fermions with
CP -violating interactions beyond the Standard Model are required, and their parameters
are most important in calculating nL(x) and hence the produced baryon asymmetry once we
assume a strong enough electroweak phase transition.
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FACTORIZED EWBG IN SM

– Look for those charges which are approximately conserved in the symmetric phase,
so that they can efficiently diffuse in front of the bubble where baryon number violation is
fast, and non-orthogonal to baryon number, so that the generation of a non-zero baryon
charge is energetically favoured.

– Compute the CP violating currents of the plasma locally induced by the passage of
the bubble wall.

– Write and solve a set of coupled differential diffusion equations for the local particle
densities, including the CP violating source terms derived from the computation of the
current at the previous step and the particle number changing reactions. The solution to
these equations gives a net baryon number which is produced in the symmetric phase and
then transmitted into the interior of the bubbles of the broken phase, where it is not wiped
out if the first transition is strong enough.

7.1 Electoweak baryogenesis in the SM

Since C and CP are known to be violated by the electroweak interactions, it is possible
– in principle –to satisfy all Sakharov’s conditions within the SM if the electroweak phase
transition leading to the breaking of SU(2)L ⊗ U(1)Y is of the first order [62]. There are
very good reviews on electroweak baryogenesis and the reader is referred to them for more
details [29, 113, 122, 38].

The asymmetry flowing inside the bubbles of the broken phase will survive if sphaleron
transitions are frozen out and baryon number violation is inefficient. As we have learned in
the previous section, baryon number violation is out-of-equilibrium inside the bubble wall
only of 〈φ(Tc)〉

Tc ∼> 1, i.e. if the electoweak phase transition is strong first order. Let us now
understand as this condition translates into a upper bound on the Higgs mass mh.

In general, given an order parameter φ and a set of particles i with masses mi(φ) in
the φ background, plasma masses πi(T ) and degrees of freedom ni, the effective one-loop
improved potential at finite temperature is given by [106]

∆V bos(φ, T ) =
∑

i

ni

{
m2

i (φ)

24
T 2 −

T

12π

[
m2

i (φ) + Πi(T )
]3/2

−
m4

i (φ)

64π2
log

m2
i (φ)

ABT 2

}

(229)

if the particles are bosons and

∆V fer(φ, T ) =
∑

i

ni

{
m2

i (φ)

48
T 2 +

m4
i (φ)

64π2
log

m2
i (φ)

AF T 2

}

(230)

if they are fermions. Here AB = 16 AF = 16π2 exp(3/2 − 2γE), γE $ 0.5722.
One can therefore write the total one-loop effective potential of the SM Higgs field at

finite temperature as as [106]

V (φ, T ) = D(T 2 − T 2
0 )φ2 − ETφ3 +

λ(T )

4
φ4, (231)

where

D =
2M2

W + M2
Z + 2m2

t

8v2
,

57
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1-loop
thermal
potential

E =
2M3

W + M3
Z

4πv3
,

T0 =
m2

h − 8Bv2

4D
,

B =
3

64π2v4
(2M4

W + M4
Z − 4m4

t ),

λ(T ) = λ−
3

16π2v4

(

2M4
W Log

M2
W

ABT 2
+ M4

Z Log
M2

Z

ABT 2
− 4m4

t Log
M2

t

AF T 2

)

, (232)

where mt is the mass of the top-quark.
It is now easy to see that, when the minimum φ = 0 becomes metastable, i.e at the

temperature Tc when V (0, Tc) = V (φ(Tc), Tc), one has

φ(Tc)

Tc
=

2ETc

λ(Tc)
"

4Ev2

m2
h

, (233)

where we have used the fact that m2
h = 2λv2. The condition (216) is therefore satisfied only

if

mh ∼<

√
4E

1.3
∼ 42 GeV. (234)

On the other hand, the current lower bound on mh comes from combining the results
of DELPHI, L3 and OPAL experiments and is mh > 89.3 GeV [11]. A simple one-loop
computation shows, therefore, that the electroweak phase transition is too weakly first
order to assure the preservation of the generated baryon asymmetry at the electroweak
phase transition in the SM. More complete perturbative and non-perturbative analyses
[113] have shown that the electroweak phase transition is first order if the mass of the Higgs
mh is smaller than about 80 GeV and for larger masses becomes a smooth crossover. Let
us now briefly analyzed the issue of CP violation within the SM. Because of CP violation
in the kaon system, it is of great interest to see whether enough CP violation is present in
the SM to generate the baryon asymmetry at the observed level.

A very rough (and optimistic) estimate of the amount of CP violation necessary to
generate B " 10−10 can be obtained as follows. Since the baryon number violation rate in
the symmetric phase is proportional to α4

W " 10−6, if we indicate by δCP the suppression
factor due to CP violation, we get

B "
α4

W T 3

s
δCP " 10−8 δCP . (235)

Even neglecting all the suppression factors coming from the dynamics of the electroweak
phase transition, we discover that

δCP ∼> 10−3. (236)

A naive estimate suggests that, since CP violation vanishes in the SM if any two quarks of
the same charge have the same mass, the measure of CP violation should be the Jarlskog
invariant

ACP

J
=

(
M2

t − M2
c

)(
M2

c − M2
u

) (
M2

u − M2
t

)

(
M2

b − M2
s

)(
M2

s − M2
d

) (
M2

d − M2
b

)
, (237)
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where mt is the mass of the top-quark.
It is now easy to see that, when the minimum φ = 0 becomes metastable, i.e at the

temperature Tc when V (0, Tc) = V (φ(Tc), Tc), one has
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where we have used the fact that m2
h = 2λv2. The condition (216) is therefore satisfied only

if

mh ∼<

√
4E

1.3
∼ 42 GeV. (234)

On the other hand, the current lower bound on mh comes from combining the results
of DELPHI, L3 and OPAL experiments and is mh > 89.3 GeV [11]. A simple one-loop
computation shows, therefore, that the electroweak phase transition is too weakly first
order to assure the preservation of the generated baryon asymmetry at the electroweak
phase transition in the SM. More complete perturbative and non-perturbative analyses
[113] have shown that the electroweak phase transition is first order if the mass of the Higgs
mh is smaller than about 80 GeV and for larger masses becomes a smooth crossover. Let
us now briefly analyzed the issue of CP violation within the SM. Because of CP violation
in the kaon system, it is of great interest to see whether enough CP violation is present in
the SM to generate the baryon asymmetry at the observed level.

A very rough (and optimistic) estimate of the amount of CP violation necessary to
generate B " 10−10 can be obtained as follows. Since the baryon number violation rate in
the symmetric phase is proportional to α4

W " 10−6, if we indicate by δCP the suppression
factor due to CP violation, we get

B "
α4

W T 3

s
δCP " 10−8 δCP . (235)

Even neglecting all the suppression factors coming from the dynamics of the electroweak
phase transition, we discover that

δCP ∼> 10−3. (236)

A naive estimate suggests that, since CP violation vanishes in the SM if any two quarks of
the same charge have the same mass, the measure of CP violation should be the Jarlskog
invariant
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The free energy increases quadratically with the fermion number density and the transitions
which increase nB+L are energetically disfavoured with respect to the ones that decrease
the fermion number. If these transitions are active for a long enough period of time, the
system relaxes to the state of minimum energy, i.e. nB+L = 0: any initial asymmetry in
B + L relaxes to zero.

To address this issue more quantitatively, one has to consider the ratio between the
transitions with δNCS = +1 and the ones with δNCS = −1

Γ+

Γ−
= e−∆f/T , (212)

wheer ∆f is the free energy difference between the two vacua. If we define Γsp to be the
average between Γ+ and Γ−, we may compute the rate at which the baryon number is
washed out [10]

dnB+L

dt
= Γ+ − Γ− " −

13

2
NF

Γsp

T 3
nB+L. (213)

Equation (213) is crucial to discuss the fate of the baryon asymmetry generated at the GUT
scale and is called Master equation.

Let us now consider temperatures much above the electroweak phase transition, T #
MW . Baryon number violation processes are active at very high temperatures if the rate
207) is smaller than the expansion of the Universe

Γsp

T 3 ∼> H ⇒ T ∼< α4
W

MP

g1/2
∗

∼ 1012 GeV. (214)

If so, any preexisting asymmetry in B + L is erased exponentially with a typical time scale
τ ∼ 2NF T 3/13Γsp.

Let us now consider temperatures T ∼ MW when the electroweak phase transition is
taking place and the Higgs VEV 〈φ(T )〉 is not zero. Baryon number violation processes
are out-of-equilibrium if, again, the rate (202) is smaller than the expansion rate of the
Universe. This translates into the bound on Esp(T ) [10]

Esp(Tc)

Tc
∼> 45, (215)

wheer we have indicated by Tc the critical temperature at which the electroweak phase
transition is taking place. Using the relation (179) this bound may be translated into a
bound on 〈φ(Tc)〉

〈φ(Tc)〉
Tc

∼> 1. (216)

Any generation of the baryon asymmetry at the electroweak phase transition requires –
therefore – a strong enough phase transition, that is able to produce a VEV for the Higgs
field larger than the critical temperature. We will come back to this point later on.

6.5.1 A crucial point

In all the considerations leading to Eq. (213) we have been assuming that all the charges
which are conserved by the interactions of the particles in the plasma (Q, B − L, Li,
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– Look for those charges which are approximately conserved in the symmetric phase,
so that they can efficiently diffuse in front of the bubble where baryon number violation is
fast, and non-orthogonal to baryon number, so that the generation of a non-zero baryon
charge is energetically favoured.

– Compute the CP violating currents of the plasma locally induced by the passage of
the bubble wall.

– Write and solve a set of coupled differential diffusion equations for the local particle
densities, including the CP violating source terms derived from the computation of the
current at the previous step and the particle number changing reactions. The solution to
these equations gives a net baryon number which is produced in the symmetric phase and
then transmitted into the interior of the bubbles of the broken phase, where it is not wiped
out if the first transition is strong enough.

7.1 Electoweak baryogenesis in the SM

Since C and CP are known to be violated by the electroweak interactions, it is possible
– in principle –to satisfy all Sakharov’s conditions within the SM if the electroweak phase
transition leading to the breaking of SU(2)L ⊗ U(1)Y is of the first order [62]. There are
very good reviews on electroweak baryogenesis and the reader is referred to them for more
details [29, 113, 122, 38].

The asymmetry flowing inside the bubbles of the broken phase will survive if sphaleron
transitions are frozen out and baryon number violation is inefficient. As we have learned in
the previous section, baryon number violation is out-of-equilibrium inside the bubble wall
only of 〈φ(Tc)〉

Tc ∼> 1, i.e. if the electoweak phase transition is strong first order. Let us now
understand as this condition translates into a upper bound on the Higgs mass mh.

In general, given an order parameter φ and a set of particles i with masses mi(φ) in
the φ background, plasma masses πi(T ) and degrees of freedom ni, the effective one-loop
improved potential at finite temperature is given by [106]
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{
m2
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[
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if the particles are bosons and
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(230)

if they are fermions. Here AB = 16 AF = 16π2 exp(3/2 − 2γE), γE $ 0.5722.
One can therefore write the total one-loop effective potential of the SM Higgs field at

finite temperature as as [106]

V (φ, T ) = D(T 2 − T 2
0 )φ2 − ETφ3 +

λ(T )

4
φ4, (231)

where
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where mt is the mass of the top-quark.
It is now easy to see that, when the minimum φ = 0 becomes metastable, i.e at the

temperature Tc when V (0, Tc) = V (φ(Tc), Tc), one has
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where we have used the fact that m2
h = 2λv2. The condition (216) is therefore satisfied only

if

mh ∼<

√
4E

1.3
∼ 42 GeV. (234)

On the other hand, the current lower bound on mh comes from combining the results
of DELPHI, L3 and OPAL experiments and is mh > 89.3 GeV [11]. A simple one-loop
computation shows, therefore, that the electroweak phase transition is too weakly first
order to assure the preservation of the generated baryon asymmetry at the electroweak
phase transition in the SM. More complete perturbative and non-perturbative analyses
[113] have shown that the electroweak phase transition is first order if the mass of the Higgs
mh is smaller than about 80 GeV and for larger masses becomes a smooth crossover. Let
us now briefly analyzed the issue of CP violation within the SM. Because of CP violation
in the kaon system, it is of great interest to see whether enough CP violation is present in
the SM to generate the baryon asymmetry at the observed level.

A very rough (and optimistic) estimate of the amount of CP violation necessary to
generate B " 10−10 can be obtained as follows. Since the baryon number violation rate in
the symmetric phase is proportional to α4

W " 10−6, if we indicate by δCP the suppression
factor due to CP violation, we get

B "
α4

W T 3

s
δCP " 10−8 δCP . (235)

Even neglecting all the suppression factors coming from the dynamics of the electroweak
phase transition, we discover that

δCP ∼> 10−3. (236)

A naive estimate suggests that, since CP violation vanishes in the SM if any two quarks of
the same charge have the same mass, the measure of CP violation should be the Jarlskog
invariant
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The free energy increases quadratically with the fermion number density and the transitions
which increase nB+L are energetically disfavoured with respect to the ones that decrease
the fermion number. If these transitions are active for a long enough period of time, the
system relaxes to the state of minimum energy, i.e. nB+L = 0: any initial asymmetry in
B + L relaxes to zero.

To address this issue more quantitatively, one has to consider the ratio between the
transitions with δNCS = +1 and the ones with δNCS = −1

Γ+

Γ−
= e−∆f/T , (212)

wheer ∆f is the free energy difference between the two vacua. If we define Γsp to be the
average between Γ+ and Γ−, we may compute the rate at which the baryon number is
washed out [10]

dnB+L

dt
= Γ+ − Γ− " −

13

2
NF

Γsp

T 3
nB+L. (213)

Equation (213) is crucial to discuss the fate of the baryon asymmetry generated at the GUT
scale and is called Master equation.

Let us now consider temperatures much above the electroweak phase transition, T #
MW . Baryon number violation processes are active at very high temperatures if the rate
207) is smaller than the expansion of the Universe

Γsp

T 3 ∼> H ⇒ T ∼< α4
W

MP

g1/2
∗

∼ 1012 GeV. (214)

If so, any preexisting asymmetry in B + L is erased exponentially with a typical time scale
τ ∼ 2NF T 3/13Γsp.

Let us now consider temperatures T ∼ MW when the electroweak phase transition is
taking place and the Higgs VEV 〈φ(T )〉 is not zero. Baryon number violation processes
are out-of-equilibrium if, again, the rate (202) is smaller than the expansion rate of the
Universe. This translates into the bound on Esp(T ) [10]

Esp(Tc)

Tc
∼> 45, (215)

wheer we have indicated by Tc the critical temperature at which the electroweak phase
transition is taking place. Using the relation (179) this bound may be translated into a
bound on 〈φ(Tc)〉

〈φ(Tc)〉
Tc

∼> 1. (216)

Any generation of the baryon asymmetry at the electroweak phase transition requires –
therefore – a strong enough phase transition, that is able to produce a VEV for the Higgs
field larger than the critical temperature. We will come back to this point later on.

6.5.1 A crucial point

In all the considerations leading to Eq. (213) we have been assuming that all the charges
which are conserved by the interactions of the particles in the plasma (Q, B − L, Li,
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EWBG MSSM
•New sources of CP violation (was too small in SM)

•New contributions to Higgs potential!

v

Tc
⇠ cubic

quartic

only from T 
dependent piece

Tm^3

BAU involves a complicated tunneling, quantum transport and hydrodynamics calculation.
CP -violating interactions between the plasma and the space-time varying Higgs VEV gen-
erate chiral currents across the bubble wall, which sphelarons in the unbroken phase con-
vert to baryon asymmetry. This excess then partially survives in the broken phase, where
sphelarons are suppressed, as the bubble expands. There is a vast literature on this calcula-
tion [12–14, 35–41]. The uncertainties are still order one, and tend to err on the optimistic
side [42]. That being said, the generation of a su�cient BAU seems at least possible within
the MSSM for some suitably chosen gaugino/higgsino parameters (M1,M2, µ, tan �,mA), if
there is a strong enough first order phase transition.1

The only severe constraint from this step of the calculation comes from EDMs [44] that
can arise as a result of the required CP -violating phases. The required phases are �1 =
Arg(µM1b

?) and �2 = Arg(µM2b
?), where b is the Higgs sector soft mass. One-loop EDM

contributions can be suppressed by making the first and second generation sfermions heavier
than ⇠ 10TeV, but two-loop contributions involving the chargino and Higgs fields are sizable
unlessmA >⇠ 1TeV (see e.g. [15,17,39]). This generic bound can be loosened if �2 is strongly
suppressed relative to �1, since the phase of the bino-mass by itself does not generate strong
two-loop EDM contributions. In this bino-driven scenario [39]mA can take on smaller values.

Calculating the strength of the first order phase transition is somewhat more straightfor-
ward, and ultimately more constraining, than the baryon density calculation. A su�ciently
strong phase transition requires vc/Tc >⇠ 1 (see e.g. [5]), where Tc ⇡ 100GeV is the criti-

cal temperature at which the electroweak symmetry breaking vacuum � = vc is degenerate
with the symmetric minimum � = 0. In the one-loop thermal Higgs potential one finds
that vc/Tc ⇠ (cubic coe�cient)/(quartic coe�cient). The cubic term comes solely from the
thermal contribution and has the form �V ⇠ Tmi(�)3, where mi(�) is the field dependent
thermal mass of the additional scalars in the MSSM. To maximize the strength of the phase
transition clearly requires maximizing the new contributions to the cubic term. Given the
form of the contribution from the scalars of the MSSM, the largest potential contribution
will come from the stop sector. The Higgs dependent masses of the stops are given by

m2
t̃R

= m2
Q3

+ h2
t�

2
u +

✓
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2
� 2

3
sin2 ✓W

◆
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2
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2
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2
(�2

u � �2
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m2
X = ht(At�u � µ�d)

where �u,d = ReH0
u,d. Working along the direction of the zero-temperature Higgs-VEV in

1 It was recently suggested [43] that modifying the thermal history of the universe could enlarge the
parameter space for EWBG within the MSSM. However, given the known mechanisms for generating baryons
during the phase transition, this is not a viable proposal.
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LIGHT STOP SCENARIO
the Higgs potential2, (�u,�d) = (� sin �,� cos �), their mass eigenvalues are

m2
t̃1,2

(�) =
m2

t̃L
(�) +m2
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±
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m2

t̃L
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(�)
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+ [m2
X(�)]

2
. (2.1)

In the cubic term of the thermal one-loop thermal Higgs potential one has to replace the soft
masses m2

Q3,U3
by m2

Q3,U3
+⇧tL,tR , where ⇧tL , ⇧t̃R ⇠ g2T 2 are the thermal masses of the LH

and RH stops. (This is necessary to control IR divergences in the one-loop thermal potential
and restore the validity of the perturbative expansion at the critical temperature [45, 46]).
To maximize the cubic Higgs term, one of the stop mass eigenvalues should therefore be
close to ⇠ h2

t�
2. This requires small stop mixing, as well as a fairly precise cancellation

between the light stop’s thermal mass, ⇧t̃R ⇠ g2T 2
c , and the necessarily negative stop soft

mass-squared [8]. This yields one stop that is lighter than the top. To increase the Higgs
mass beyond the LEP limit [6] and avoid large corrections to the ⇢-parameter [47] the LH
stop should then be heavier than a TeV or so.

Two-loop corrections [10, 11, 16, 18, 48] are quite large because gs enters for the first
time at this order. Both two-loop and non-perturbative corrections [9,49] enhance the phase
transition, enlarging the viable parameter space. This gives provides a more complete picture
of the viable regions of MSSM parameter space for electroweak baryogenesis, but the intuition
from examining one-loop e↵ects still provides a helpful guide.

Putting all these ingredients together leads to the Light Stop Scenario (LSS) [8–19], the
only corner of MSSM parameter space where electroweak baryogenesis might be possible.
The constraints on the stop sector parameters are the following:

• Achieving a strong phase transition and avoiding color-breaking requires a mostly
right-handed light stop with mt̃1 < mt and At <⇠ mQ/2. [8, 16, 17].

• The mostly left-handed stop should be heavier than ⇠ TeV to satisfy the LEP Higgs
mass bound (for a SM-like Higgs) and avoid large corrections to the ⇢-parameter.

• The gluino should be heavier than ⇠ 500GeV to decouple it from the plasma, otherwise
its large contribution to the stop thermal masses would make it even more di�cult to
achieve the needed cancellation m2

U3
⇠ �⇧tR .

In addition, there are some constraints on the electroweak gaugino and higgsino parameters
to allow for su�cient generation of BAU:

• M1 or M2 ⇠ µ ⇠ O(100GeV) with su�ciently large CP -violating phases in the -ino
sector, as well as tan � <⇠ 15 [17].

• mA >⇠ 1TeV, unless all the CP -violation is pushed into the bino soft mass [39].

2This is valid at the critical temperature if mA is large, and su�cient for our purposes of demonstrating
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LSS IN LIGHT OF LHC HIGGS

3 LSS and a heavy Higgs

It is well known to experts that the possible detection of a ⇡ 125 GeV Higgs at the LHC
spells trouble for electroweak baryogenesis in the MSSM. Such a large Higgs mass can only
be achieved if stop mixing is large (incompatible with a strong phase transition) or if the
left-handed stop is extraordinarily heavy. To quantify the exact consequences of such a heavy
Higgs, we draw upon the results of [17].

The authors of [17] studied the electroweak baryogenesis window of the MSSM in great
detail. They constructed a low-energy e↵ective theory [16] in which all scalar superpartners
with the exception of the RH stop are pushed to some high common scale.1 This e↵ective
description, tailored to the Light Stop Scenario, included the most important one- and two-
loop e↵ects. They constructed the resulting thermal Higgs potential and scanned over the
stop- and Higgs-sector parameter space. Requiring a su�ciently strong first-order phase
transition and avoiding color-breaking yields regions of the stop-Higgs mass plane where
electroweak baryogenesis could proceed within the MSSM.

As expected, a Higgs mass in the range of 123GeV  mh  128GeV is extremely di�cult
to accommodate. The stop sector has to take on a very particular form:

mt̃R = 80� 115GeV , mt̃L
>⇠ 103 TeV , tan � ⇡ 5� 15 (3.1)

with stop mixing being completely negligible for such large mQ. The size of the allowed mt̃R
range is somewhat overestimated, since it was obtained by interpreting the results of the
analysis in a very conservative fashion. Therefore, if this stop spectrum can be excluded,
then electroweak baryogenesis in the MSSM is excluded (assuming of course that the Higgs
mass falls into the above mentioned range).

The extremely heavy left-handed stop is in some conflict with notions of naturalness,
reminiscent of Split Supersymmetry [50]. One could ask how a high-energy theory of SUSY
breaking could generate such a spectrum [32], but let us put aside such considerations and
focus on the phenomenology.

The light right-handed stop with a mass of ⇠ 100GeV is an extremely interesting pre-

diction of electroweak baryogenesis within the MSSM, emerging as a direct consequence of
requiring a su�ciently strong electroweak phase transition and a Higgs mass of ⇡ 125GeV.
It is already excluded if it decays promptly [51–53] or escapes the detector [54], but one
could imagine it being hidden from direct stop searches somehow, for example by decaying
via a displaced vertex [55].

The question is then: given a Higgs mass of ⇡ 125GeV, can electroweak baryogenesis
within the MSSM be excluded in a model-independent way? As it turns out, the answer is
yes. The specific spectrum required by the LSS in light of such a Higgs mass, especially the
light RH stop, makes very definite predictions for the Higgs production rate and branch-
ing ratios. This allows us to test electroweak baryogenesis within the MSSM using pure

1 The scalars other than the LH stop have been made heavy to satisfy EDM constraints, but this might
not be necessary (e.g. Bino-Driven EWBG [39]). Nevertheless, the derived restrictions on the stop spectrum
should be widely applicable.
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Higgs data, separate from collider searches for the stop and questions of how such a strange
spectrum could be generated by a high-energy theory of SUSY-breaking.

4 The Fingerprint of Electroweak Baryogenesis

The presence of a light RH stop can significantly alter Higgs production and decay rates
compared to their SM expectation. In the context of overall inclusive production cross
sections this has been investigated in detail by [33]. However, even without an unambiguous
5� Higgs discovery at the LHC, or an extremely precise measurement of the �� branching
fraction, it is still possible to conclusively test the mechanism of EWBG in the MSSM. This
is because the LSS makes specific predictions for all possible production and decay modes
of the Higgs, and they have very particular correlations.

The presence of the light RH stop a↵ects Higgs phenomenology through loop level pro-
duction via gluon fusion and decays to ��. The e↵ects are encoded by examining the partial
widths, which can be related to both production and decay. The leading order contributions
to gluon fusion (in the decoupling limit) are [56]
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The crucial point is that the light stop loop interferes constructively with the top quark
loop, which leads to a more than three-fold increase in the Higgs production cross section
via gluon fusion. However, when investigating the clean �� decay channel we must also
examine the stop’s contribution to the h ! �� decay width, which at lowest order (again in
the decoupling limit) is
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Figure 3: The solid (dashed) curves represent the real (imaginary) part of the functions A0(⌧)
(blue), A1/2(⌧) (red) and A1(⌧) (black). The blue, red and the black points correspond to
a 105 GeV stop, top quark and W boson respectively assuming a Higgs boson of mass 125
GeV.

decoupled heavy scalars, the LO one-loop expression for the partial width �(h ! ��) is
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Though we have neglected the chargino contributions in our calculation, the last term in Eq.
(3.4) can give sizable contributions of order 10% for m�+ ⇠ 100 GeV. These are included
in parametrization error as discussed before. The dominant contribution in Eq. (3.4) comes
from the W boson loops as can be seen in Fig. 3.1. The top and stop loops now interfere
destructively with the W loops, thereby decreasing the decay width �(h ! ��) by nearly a
factor of 1/2 compared to the SM expectation.

As a result, the number of di-photon events from the Higgs decay is only enhanced by at
most a factor of 2. By contrast, the Z pair production is significantly increased compared to
SM because the decay h ! ZZ is tree level at LO and the e↵ect of light stop is negligible.

Comparison to LHC Data

Fig. 4 shows the predictions of electroweak baryogenesis within the MSSM in the R��-RZZ

plane for di↵erent values of the Higgs mass between 123 and 128GeV.
The theory error in R�� is ⇠ 15%. The RZZ error is much smaller for a given stop mass.

However, since the ZZ-rate is much more sensitive to the light stop loop in the production
cross section, the unknown precise stop mass translates into an e↵ective uncertainty of the
RZZ prediction that is also ⇠ 15% (with our extended mt̃R-range).
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Production Cross Section

By far the most dominant channel for Higgs production at the hadron colliders is the gluon
fusion. Since [1] expresses its results in terms of mh-dependent best-fit bounds on �/�SM for
each channel, we actually only need to compute the cross section ratio R� = �MSSM/�SM

for Higgs production in the Standard Model and the MSSM with the EWBG spectrum Eq.
(2.3).

The LO cross-section for a 2 ! 1 process is proportional to the decay width of the
inverse process. Therefore, to estimate the MSSM Higgs production cross-section through
gluon fusion, we use the following approximation:

R� =
�MSSM

�SM
=

�MSSM(h ! gg)

�SM(h ! gg)
(3.2)

where we use the decay widths calculated above. The QCD K-factors for h ! gg di↵er by
⇠ 6 % for the SM and the MSSM case and this di↵erence is taken into account by using NLO
decay widths. Thus, we expect this approximation to work very well and its contribution to
the theory error of R��,ZZ to be small compared to the other uncertainties.

E↵ect of a Light Right-Handed Stop

Before comparing the predictions of electroweak baryogenesis to ATLAS data we would like
to understand the e↵ect that a light right-handed stop would have on the various decay
widths.

In the decoupling limit the MSSM Higgs couplings are identical to the SM Higgs cou-
plings (except some SUSY corrections which are negligible in our case). Therefore the only
significant di↵erence between the SM Higgs and MSSM CP-even Higgs decays are the light
stop contributions in loop induced channels.

To understand the e↵ect on the production cross section it is instructive to consider the
LO decay width for h ! gg:
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where ⌧i = m2
h/4m

2
i , ght̃R t̃R is the normalized Higgs coupling to the right-handed stop given

in section 1.2.4 of [86] (for no stop mixing scenario, ght̃R t̃R ⇡ m2
t + 2/3 cos 2�s2wm

2
Z) and the

functions As (s = 0, 1/2 or 1) are given in section 2.1.3 of [86]. The functions A0(⌧), A1/2(⌧)
and A1(⌧) are plotted in in Fig. 3.1. We see that the light stop loop interferes constructively
with the top quark loop. This leads to a more than three-fold increase in the partial decay
width �(h ! gg) and correspondingly the Higgs production cross section.

The partial decay width of Higgs boson decay to di-photons gets loop contributions from
W gauge bosons, fermions, sfermions, charginos and heavy Higgs scalars. Ignoring all the
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Figure 1: Theoretical EWBG fingerprint for mA = 2TeV and 300 GeV, for a range of stop
masses from 80-115 GeV including theory errors. Shown are signal strength predictions
for each channel, with subscripts indicating an exclusive production mode. The exception
is ��[VBF⇤], which denotes the signal strength prediction for a h ! �� search with VBF
cuts [23], such that ⇠VBF/⇠ggF ⇡ 30 in Eq. (4.9). The purple line is the SM expectation. This
fingerprint is formh = 125GeV, but the dependence onmh is very small in the 123�128GeV
neighborhood of Higgs masses. Solid red bands indicate the range of predictions for mt̃R 2
(80, 115)GeV. The light red bands indicate the theory error at the top and bottom of the
stop mass range. tan � was allowed to vary in the range (5, 15), but its e↵ect is very small
since mh was taken as a low-energy input. The rate of decays that are dominated by gluon
fusion increases for lighter stop masses, while �� and channels sensitive to Vector Boson
Fusion and Associated Production are much less a↵ected.

5.1 Available Data

Table 1 summarizes all the available Higgs searches to date that are relevant to our analysis.
A few remarks are in order:

• We use Eqns. (4.8) and (4.9) to compute the theory predictions for the �� signal
strengths (similarly for the other channels). The inclusive signal strength prediction
assumes equal signal e�ciencies for ggF and VBF, which is a conservative choice for
setting limits. Production is dominated by ggF, but assuming the VBF e�ciency to be
zero would lead us to slightly overestimate the theory prediction for the signal strength
µ, since ggF is enhanced in our MSSM scenario. As we will see, this would increase
tension with the data. Therefore, we set the two e�ciencies to be equal, while noting

9



EXPERIMENTAL STATUS (AS 
OF MORIOND LAST YEAR)

Production Mode Sensitivity Signal Strength Bounds
ggF VBF AP Inclusive Source mh range (GeV)

��
ATLAS [20] ? o�cial (110, 150)
CMS [23,59] ? ? reconstructed† [26] (120, 128)

ZZ⇤ ATLAS [21] ? o�cial (110, 150)
CMS [24] ? reconstructed† [26] (120, 128)

WW ⇤ ATLAS [60] ? o�cial (110, 150)
CMS � � — —

bb
ATLAS [61] ? o�cial (110, 130)
CMS [59,62] ? reconstructed† [57] (110, 130)

D0 + CDF [63] ? o�cial (100, 150)

⌧⌧
ATLAS [64] ? ? reconstructed [57] (110, 150)
CMS [65] � ? reconstructed [57] (110, 150)

Table 1: Summary of the relevant higgs searches and their sensitivity to production modes
and decay channels. ’?’ indicates that the experiment released su�cient experimental data
for our analysis. ’�’ indicates that even though search channel was considered in the ex-
periment, the publicly available data was insu�cient for our analysis. Whenever o�cial
signal strength bounds were unavailable we performed our analysis using approximate re-
constructed likelihoods for the signal strength (which are likely to give more conservative
bounds than the o�cial fit). For CMS ��, ZZ⇤ we used likelihoods supplied to us by the
authors of [26], while for CMS bb and both ⌧⌧ searches we reconstructed the likelihoods using
the methods of [57]. †CMS made o�cial ��[VBF], ZZ⇤, bb[AP] signal strength bounds available
at mh = 124, 125 GeV, which were used instead of the reconstructed approximations.

µ, since ggF is enhanced in our MSSM scenario. As we will see, this would increase
tension with the data. Therefore, we set the two e�ciencies to be equal, while noting
that some deviation from this assumption will not invalidate the analysis since rSM is
small.

• O�cial signal strength bounds were not always available for each channel. Fortunately,
the authors of [26] reconstructed approximate signal strength likelihoods for the CMS
��, ZZ⇤ searches by using the information that is publicly available and generating
their own event samples. For other searches we used the methods of [57], very similar
to the ideas of [26], to reconstruct approximate likelihoods where necessary.

• We used the older ATLAS h ! WW ⇤ ! ``⌫⌫ search using 2.05 fb�1 of data [60]
rather than the updated version with 4.7 fb�1 [66]. The latter is significantly more
constraining and looks to increase the tension with the EWBG prediction, but there
is not enough information available to reliably disentangle the ggF and VBF contribu-
tions. The CMS WW ⇤ search [67] is omitted because signal strength bound are only
reconstructible for mh = 120, 130GeV.
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EXPERIMENTAL CONSTRAINTS
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Figure 2: Comparing the signal strength predictions for each Higgs decay channel of elec-
troweak baryogenesis in the MSSM with the ATLAS, CMS and Tevatron data as explained
in Section 5.1. Subscripts indicate exclusive production via a single mode. For each chan-
nel we show up to three bands: the EWBG prediction, with mt̃R 2 (80, 115)GeV (red,
with theoretical error bands in light red) and the ATLAS/CMS 1-� best-fit measurements
(blue/green, with central value indicated in dark blue/green). In the bb[AP] channel we also
show the combined Tevatron constraint as a fourth band (purple). The SM prediction is
indicated with a horizontal line at µ = 1.

Fig. 2 compares the signal strength predictions to the experimental signal strength bounds
in all available channels, for mh = 125 and 126GeV. The results are displayed for these two
higgs masses since they are preferred by the CMS and ATLAS �� searches, respectively.
A visual inspection already reveals some tension with the data. We will now make this
impression quantitative.

5.2 Excluding Electroweak Baryogenesis in the MSSM

Given the large error bars in the early Higgs data it is perhaps surprising that we can make
relatively strong statements regarding the exclusion of electroweak baryogenesis. This is
due to the correlations of the signal strength predictions in the various channels and their
dependence on EWBG parameters.
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EXCLUSION AT 125 GEV
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Figure 3: Exclusion plot of EWBG parameter space for mh = 125GeV, obtained by combin-
ing the signal strength bounds from the various ATLAS and CMS Higgs searches (not Teva-
tron) as outlined in Section 5.1. The smallest exclusion at mA ⇡ 300GeV, mt̃R = 115GeV
is 97.2%, which increases to 98.5% if we enforce the decoupling limit (mA > 1TeV).

The Higgs signal in the various channels depends only very weakly on tan �, since our
parameterization takes mh as a low-energy input and tan � can not be large for successful
EWBG. Therefore, for a given Higgs mass, the parameter space of EWBG in the MSSM is
the (mA,mt̃R) plane. Once the Higgs mass is determined this will be the relevant parameter
space to exclude.

After taking into account theory error and the small amount of tan � dependence, each
point in the (mA,mt̃R) plane maps to a range of signal strength vectors (µ��, µ��VBF⇤ , . . .),
which constitute the range of experimental predictions for this parameter point. Maximizing
the signal strength likelihood function L(µ��, µ��VBF⇤ , . . .), which is obtained from experimen-
tal data, over the range of allowed signal strength vectors gives the exclusion for this point in
the (mA,mt̃R) plane. Unfortunately the signal strength likelihood function L is not directly
available. However, we can obtain a passable approximation by first assuming that the sepa-
rate searches are independent, and then using the 1-� best-fit bounds on the separate signal
strengths to obtain gaussian approximations for Li(µi) (taking into account asymmetric er-
ror bars where appropriate). Normalizing logL =

P
i Li(µi) to have a maximum value of

zero, we obtain the desired likelihood function.
In Fig. 3 we show the exclusion across EWBG parameter space, obtained by combining

ATLAS and CMS data for mh = 125GeV. The entire parameter space is excluded at the
97.2 % CL (98.5 % if we enforce the decoupling limit). The least excluded points are at
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troweak baryogenesis in the MSSM with the ATLAS, CMS and Tevatron data as explained
in Section 5.1. Subscripts indicate exclusive production via a single mode. For each chan-
nel we show up to three bands: the EWBG prediction, with mt̃R 2 (80, 115)GeV (red,
with theoretical error bands in light red) and the ATLAS/CMS 1-� best-fit measurements
(blue/green, with central value indicated in dark blue/green). In the bb[AP] channel we also
show the combined Tevatron constraint as a fourth band (purple). The SM prediction is
indicated with a horizontal line at µ = 1.

Fig. 2 compares the signal strength predictions to the experimental signal strength bounds
in all available channels, for mh = 125 and 126GeV. The results are displayed for these two
higgs masses since they are preferred by the CMS and ATLAS �� searches, respectively.
A visual inspection already reveals some tension with the data. We will now make this
impression quantitative.

5.2 Excluding Electroweak Baryogenesis in the MSSM

Given the large error bars in the early Higgs data it is perhaps surprising that we can make
relatively strong statements regarding the exclusion of electroweak baryogenesis. This is
due to the correlations of the signal strength predictions in the various channels and their
dependence on EWBG parameters.
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Figure 3: Exclusion plot of EWBG parameter space for mh = 125GeV, obtained by combin-
ing the signal strength bounds from the various ATLAS and CMS Higgs searches (not Teva-
tron) as outlined in Section 5.1. The smallest exclusion at mA ⇡ 300GeV, mt̃R = 115GeV
is 97.2%, which increases to 98.5% if we enforce the decoupling limit (mA > 1TeV).

The Higgs signal in the various channels depends only very weakly on tan �, since our
parameterization takes mh as a low-energy input and tan � can not be large for successful
EWBG. Therefore, for a given Higgs mass, the parameter space of EWBG in the MSSM is
the (mA,mt̃R) plane. Once the Higgs mass is determined this will be the relevant parameter
space to exclude.

After taking into account theory error and the small amount of tan � dependence, each
point in the (mA,mt̃R) plane maps to a range of signal strength vectors (µ��, µ��VBF⇤ , . . .),
which constitute the range of experimental predictions for this parameter point. Maximizing
the signal strength likelihood function L(µ��, µ��VBF⇤ , . . .), which is obtained from experimen-
tal data, over the range of allowed signal strength vectors gives the exclusion for this point in
the (mA,mt̃R) plane. Unfortunately the signal strength likelihood function L is not directly
available. However, we can obtain a passable approximation by first assuming that the sepa-
rate searches are independent, and then using the 1-� best-fit bounds on the separate signal
strengths to obtain gaussian approximations for Li(µi) (taking into account asymmetric er-
ror bars where appropriate). Normalizing logL =

P
i Li(µi) to have a maximum value of

zero, we obtain the desired likelihood function.
In Fig. 3 we show the exclusion across EWBG parameter space, obtained by combining

ATLAS and CMS data for mh = 125GeV. The entire parameter space is excluded at the
97.2 % CL (98.5 % if we enforce the decoupling limit). The least excluded points are at
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CONCLUSIONS:
MSSM EWBG DEAD

OR WAITING FOR PLUG TO BE 
PULLED

• Higgs at 125 means 95% CL exclusion

• Higgs in any of the allowed region excluded at >90% CL

•NMSSM?

•More General Conclusions?
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OBSERVATION?



NOT ALL CHANNELS EQUALLY OBSERVED YET...



NOT ALL CHANNELS EQUALLY OBSERVED YET...



MAY NOT BE GOOD FOR YOU BUT... 



MAY NOT BE GOOD FOR YOU BUT... 

More Theorists believe this 
is a Higgs than any other 
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(a) Decoupling Limit (b) 150GeV < mA < 2TeV

Figure 4: Exclusion of a more general Light Stop Scenario in the (mh,mt̃R) plane. As before,
t̃L is taken to be very heavy, whilemA and tan � were varied in the range (150, 2000)GeV and
(5, 15). This exclusion plot was created via the same method as Fig. 3, using both ATLAS
and CMS data but not the Tevatron bb bound. For each point in the (mh,mt̃R) plane we
minimize exclusion with respect to theory error, tan� dependence and mA dependence. The
decoupling limit mA > 1TeV is enforced in (a), while (b) allows the whole range of mA.

5.3 Excluding a more general Light-Stop Scenario

One could loosen the assumptions of our analysis, and ask what the available LHC data tells
us about a wider range of Higgs and stop masses. Dropping the assumption of a 123 - 128
GeV Higgs allows us to examine the prospects of electroweak baryogenesis in the MSSM if
the Higgs were to sit at a di↵erent mass.

Fig. 4 shows the exclusion from ATLAS and CMS data as a function of the (mh,mt̃R)
plane. This exclusion plot was created via the same method as Fig. 3, using gaussian
approximations of the signal strength bounds. For each point in the (mh,mt̃R) plane we
minimize exclusion with respect to theory error, tan� dependence and mA dependence,
using the experimental signal strength bounds for whatever Higgs masses they are available
(see Table 1). However, there is one additional complication with this expanded Higgs mass
range: the ATLAS ZZ bounds have extremely asymmetric error bars for mh < 122GeV.
This suggests a reduced reliability of the gaussian likelihood approximation, and therefore
we do not use the ATLAS ZZ bounds for mh < 122GeV.

What does Fig. 4 imply for MSSM EWBG in general? Without a Higgs mass constraint,
the successful electroweak phase transition requires mt̃R

<⇠ 120GeV and mh < 128GeV [17].
As we can see, LHC data already excludes almost all of this parameter space at more than
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