

Measurement of supersymmetry at a 1.4 TeV CLIC collider

Jean-Jaques Blaising (LAPP/IN2P3), Astrid Münnich (CERN, now at DESY), Philipp Roloff (CERN)

International Workshop on Future Linear Colliders, University of Texas at Arlington, 25/10/2012

Introduction

25/10/2012 Philipp Roloff SUSY at a 1.4 TeV CLIC collider - LCWS12

Introduction

- Recently released CDR volume: The CLIC Programme – Towards a staged e⁺e⁻ Linear Collider exploring the Terascale
- Available online: arXiv:1209.2543
- Example scenarios are discussed where CLIC is built in three stages: 500 GeV, 1.4(1.5) TeV, 3 TeV
- All studies presented in the following were prepared for this document

Motivation for energy staging

Interesting physics (may) exist at various energies:

• Few 100 GeV:

Precision SM measurements: Higgs, top,...

• Still unknown:

Beyond Standard Model physics,

Potentially various thresholds from few 100 GeV to few TeV

→ Both require high luminosities!

Machine implementation:

- Significant luminosity penalty when running far below the nominal energy
- Possibility to start physics during construction phase for higher energies

In the following:

Potential of an intermediate energy stage at 1.4 TeV assuming L_{int} = 1.5 ab⁻¹

 \rightarrow Attractive, because only one drive beam complex required

SUSY model for staged energy studies

More details: LCD-Note-2012-003

Cross sections

- Backgrounds suppressed using combined cuts on cluster times and $\ensuremath{\textbf{p}_{\tau}}$
- Further reduction of the impact of the background is achieved using well-adapted jet finding strategies based on the LHC experience (FastJet)

1.) Gaugino pair production (LCD-Note-2012-006) Final states: four jets and missing energy Detector model: CLIC_SiD

2.) Stau pair production (LCD-Note-2012-009) Final state: two tau leptons and missing energy Detector model: CLIC_ILD

3.) First and second generation sleptons (LCD-Note-2012-012) Final state: two electrons/muons, missing energy (and four jets) Detector model: CLIC_ILD

- \rightarrow Reconstruction for large variety of final states tested
- \rightarrow Mostly different challenges compared to previous studies at 3 TeV

All studies were performed using full detector simulations!

Gaugino pair production

Signal processes:

 $\begin{array}{c} e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow W^+ W^- \tilde{\chi}_1^0 \tilde{\chi}_1^0 \\ e^+e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_2^0 \rightarrow h(Z) h(Z) \tilde{\chi}_1^0 \tilde{\chi}_1^0 \\ \end{array}$

Hadronic W^{\pm} and h decays \rightarrow 4 jets and missing energy in the final states

Particular challenge:

Reconstruction of relatively low-energy jets in the presence of pileup from $\gamma\gamma \rightarrow$ hadrons interactions

Analysis overview

- 40 < $M_{jj,1}$ < 160 GeV and 40 < $M_{jj,2}$ < 160 GeV
- $|\cos\theta^{miss}| < 0.95$
- $|\cos\theta^{jj,1}| < 0.95$ and $|\cos\theta^{jj,2}| < 0.95$
- p_{τ}^{miss} < 250 GeV
- E^{vis} < 600 GeV

Event selection: •

- Based on Boosted Decision Trees (BDTs) as implemented in TMVA
 - The BDTs were trained using 17 variables describing kinematic properties of the reconstructed W[±] and h candidates as well as the event topology

Chargino

Neutralino

BDT output > -0.0677

BDT output > 0.0158

Energy spectra of W[±] and h candidates

Pair production cross sections from counting selected events:

$\sigma(e^+e^- \to \tilde{\chi}_1^+ \tilde{\chi}_1^-) = 15.32 \pm 0.17 \text{ fb}$	$\sigma(e^+e^- o ilde{\chi}^0_2 ilde{\chi}^0_2) = 5.40 \pm 0.08~{ m fb}$	L _{int} = 1.5 ab ⁻¹
--	---	---

25/10/2012 Philipp Roloff SUSY at a 1.4 TeV CLIC collider - LCWS12

Mass measurements

The reconstructed boson energy spectra are sensitive to the SUSY particle masses

L_{int} = 1.5 ab⁻¹

$$M(\tilde{\chi}_1^+) = 487.4 \pm 0.8 \text{ GeV}$$

$$M(\tilde{\chi}_2^0) = 487.9 \pm 0.5 \text{ GeV}$$

A detailed evaluation of the systematic uncertainties is impossible at this point. \rightarrow Illustration of a few potentially dominating effects:

1.) Mass of the lightest neutralino: Impact on the reconstructed energy spectra. An uncertainty of 1% (from sleptons) translates to:

 $\Delta M(ilde{\chi}_1^+) = \pm 1.4 \,\, {
m GeV}, \Delta M(ilde{\chi}_2^0) = \pm 1.3 \,\, {
m GeV}$

2.) Jet energy scale: A 1% uncertainty in the jet energy scale leads to:

 $\Delta M(\tilde{\chi}_1^+) =_{-3.4}^{+2.8} \text{ GeV}, \Delta M(\tilde{\chi}_2^0) =_{-1.4}^{+1.1} \text{ GeV}$ **3.) Luminosity spectrum (LS):** "Ad-hoc" variation: 1% of events moved from peaks to tails and vice versa for both beams.

Negligible impact on masses

• Change in cross sections similar to statistical uncertainties

Stau pair production

Signal process:

$$e^+e^- \to \tilde{\tau}_1 \tilde{\tau}_1 \to \tau^+ \tau^- \tilde{\chi}_1^0 \tilde{\chi}_1^0$$

Reconstruction of hadronic tau decys

 \rightarrow TauFinder (LCD-Note-2010-009): Seeded cone-based jet finding algorithm:

- Seed p₁: > 15 GeV
- τ candidate inv. Mass: < 2.5 GeV

- Search cone: 0.07 radian
- Isolation cone: 0.3 radian
- Energy in isolation cone: 2 GeV
- 60% efficiency for signal τ leptons, 0.6% fake rate for quark jets
- Rejection of pileup from $\gamma\gamma \rightarrow$ hadrons interactions crucial

Event selection

Pre-selection: • $10^{\circ} < \Theta(\tau) < 170^{\circ}$, $p(\tau) > 20$ GeV for both τ 's

- ΔΦ(τ, τ) < 178°
- Angle between tau candidates > 23°
- 40 < M(τ, τ) < 650 GeV

Event selection: • Based on **Boosted Decision Trees** (BDTs) as implemented in TMVA using 16 input variables

Boosted decision tree

CERNY

Signal extraction and result

2D template fit to extract the mass and pair production cross section:

 $M(ilde{ au}_1)=517\,\,{
m GeV}$

Dependence on the lightest neutralino mass marginal

First and second generation sleptons

Signal processes:

$$\begin{split} e^+e^- &\to \tilde{\mu}_R^+ \tilde{\mu}_R^- \to \mu^+ \mu^- \tilde{\chi}_1^0 \tilde{\chi}_1^0 & \text{BR} = 100\% \\ e^+e^- &\to \tilde{e}_R^+ \tilde{e}_R^- \to e^+e^- \tilde{\chi}_1^0 \tilde{\chi}_1^0 & \text{BR} = 100\% \\ e^+e^- &\to \tilde{\nu}_e \tilde{\nu}_e \to e^+e^- \tilde{\chi}_1^+ \tilde{\chi}_1^- \to e^+e^- W^+ W^- \tilde{\chi}_1^0 \tilde{\chi}_1^0 & \text{BR} = 53\% \end{split}$$

Based on boosted decision trees using 9 variables describing the final state lepton system Example: $e^+e^- \rightarrow \tilde{e}^+_R \tilde{e}^-_R \rightarrow e^+e^- \tilde{\chi}^0_1 \tilde{\chi}^0_1$

Before cut on BDT output

After cut on BDT output

28

Instead of a summary

\sqrt{s} (TeV)	Process	Decay mode	SUSY model	Measured quantity	Unit	Gene- rator value	Stat. error
1.4	Sleptons production	$\widetilde{\mu}_R^+ \widetilde{\mu}_R^- ightarrow \mu^+ \mu^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	III	$egin{array}{l} \sigma \ ilde{\ell} ext{ mass } \ ilde{\chi}_1^0 ext{ mass } \end{array}$	fb GeV GeV	1.11 560.8 357.8	2.7% 0.1% 0.1%
		$\widetilde{e}_R^+ \widetilde{e}_R^- o e^+ e^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$		$\sigma \ ilde{\ell} ext{ mass } \ ilde{\ell}^0 ext{ mass } \ ilde{\chi}^0_1 ext{ mass } \ rac{arphi_1^0}{arphi_1^0} ext{ mass } \ arphi_1^0 ex$	fb GeV GeV	5.7 558.1 357.1	$1.1\% \\ 0.1\% \\ 0.1\%$
		$\widetilde{ u}_e\widetilde{ u}_e ightarrow \widetilde{\chi}_1^0\widetilde{\chi}_1^0e^+e^-W^+W^-$		$egin{array}{l} \sigma \ ilde{\ell} \ { m mass} \ ilde{\chi}_1^\pm \ { m mass} \end{array}$	fb GeV GeV	5.6 644.3 487.6	3.6% 2.5% 2.7%
1.4	Stau production	$\widetilde{ au}_1^+ \widetilde{ au}_1^- o au^+ au^- \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	III	$\widetilde{ au}_1$ mass $oldsymbol{\sigma}$	GeV fb	517 2.4	2.0% 7.5%
1.4	Chargino production	$\widetilde{\chi}_1^+ \widetilde{\chi}_1^- o \widetilde{\chi}_1^0 \widetilde{\chi}_1^0 W^+ W^-$	– III	$\widetilde{\chi}_1^\pm ext{ mass } \sigma$	GeV fb	487 15.3	0.2% 1.3%
	Neutralino production	$\widetilde{\chi}^0_2\widetilde{\chi}^0_2 o h/Z^0h/Z^0\widetilde{\chi}^0_1\widetilde{\chi}^0_1$		$\widetilde{\chi}_2^0$ mass σ	GeV fb	487 5.4	0.1% 1.2%

25/10/2012

Backup slides

25/10/2012 Philipp Roloff SUSY at a 1.4 TeV CLIC collider - LCWS12

– tCluster

- Define reconstruction window around t₀
- All hits and tracks in this window are passed to the reconstruction
- \rightarrow Physics objects with precise $p_{_{T}}$ and cluster time information
- \rightarrow Background rejection using combined timing & $\textbf{p}_{_{T}}$ cuts
- Further reduction of the impact of the background is achieved using well-adapted jet finding strategies based on the LHC experience (FastJet)