ATF status & plans

Philip Bambade

Laboratoire de l'Accélérateur Linéaire Université Paris 11, Orsay, France

On behalf of the ATF international collaboration

Thanks to P. Burrows, G. Christian, Y.I. Kim, S.W. Jang, N. Terunuma, J. Yan

LCWS12, Arlington, Texas

22-26 October 2012

ATF talks @ LCWS12

Status of the optical cavity R&D at KEK-ATF Tohru Takahashi - Wednesday 9.45

IP Feedback tests at ATF2 Philip Burrows - Wednesday 11.45

Ground motion feedback for ATF2 Yves Renier - Thursday 9.50 (webex)

Development of nanometer electron beam size monitor **Jacqueline Yan** - Thursday 8.30 (webex)

Beam Dynamics Studies at ATF2 Toshiyuki Okugi - Thursday 15.00 (webex)

Progress and future of ATF experimental program Junji Urakawa – Tuesday 8.30 Thursday 16.00

Accelerator Test Facility @ KEK

final doublet final focus section diagnostic and matching extraction

Parameters	ATF2	ILC	CLIC
Beam Energy [GeV]	1.3	250	1500
L* [m]	1	3.5 - 4.5	3.5
γε _{x/y} [m.rad]	5E-6 / 3E-8	1E-5 / 4E-8	6.6E-7 / 2E-8
IP $\beta_{x/y}$ [mm]	4 / 0.1	21 / 0.4	6.9 / 0.07
IP η' [rad]	0.14	0.0094	0.00144
δ _ε [%]	~ 0.1	~ 0.1	~ 0.3
Chromaticity ~ β / L*	~ 1E4	~ 1E4	~ 5E4
Number of bunches	1-3 (goal 1)	~ 3000	312
Number of bunches	3-30 (goal 2)	~ 3000	312
Bunch population	1-2E10	2E10	3.7E9
IP σ _y [nm]	37	5.7	0.7

$$L \sim \frac{n b N_e^2 f}{4 \pi \sigma_x \sigma_y} H_D$$

$$L \sim \eta \frac{P_{\text{electrical}}}{E_{CM}} \sqrt{\frac{\delta_{BS}}{\varepsilon_{n,y}}} H_D$$

 $\sigma^2 = \varepsilon_N \beta / \gamma$

Main BDS issues addressed by ATF/ATF2

validate concept(s), develop, practice, train,...

Beam instrumentation

- nm-level position
- profile (x, y, tilt)

Stabilization

- passive / active mechanical stabilization
- beam / vibration measurement based feed-back/forward

4+1 dim. phase space tuning & control for IP spot minimization

- emittance minimization via radiation damping
- mitigation of 1st, 2nd and 3rd order optical aberrations
- convergence time \leftrightarrow dynamical errors (sismic & thermal effect)

Halo control

- modeling, generation, propagation, monitoring...
- collimation (physical, optics)

ATF / ATF2 Goals

Very small damping ring vertical emittance

- from ~10 pm \rightarrow 4 pm (achieved !) \rightarrow 1-2 pm

Small vertical beam size

- achieve σ_{v} ~37 nm (cf. 5 / 1 nm in ILC / CLIC)
- validate "compact local chromaticity correction"

Stabilization of beam center

- down to~2nm
- bunch-to-bunch feedback (~300 ns, for ILC)

R&D on nanometer resolution instrumentation

□ Train young accelerator scientists on "real system"

- maintain expertise by practicing operation

→ open & unique facility

"qoal 1"

"goal 2"

Shintake Monitor

Monitor

IP

-6

Final Doublet

ATFに参加している代表的研究機関 - ATF International Collaboration -

欧州原子核研究機構(CERN) ドイツ(Germany) 電子シンクロトロン研究所(DESY) フランス(France) IN2P3; LAL, LAPP, LLR イギリス(UK) Univ. of Oxford Royal Holloway Univ. of London STFC. Daresbury Univ. of Manchester Univ. of Liverpool **Univ. College London** イタリア(Italy) **INFN, Frascati** スペイン(Spain) IFIC-CSIC/UV ロシア(Russia) Tomsk Polytechnic Univ.

```
コーネル大学(Cornell Univ.)
                    ノートルダム大学(Notre Dome Univ.)
日本(Japan)
    高エネルギー加速器研究機構(KEK)
           (Tohoku Univ.)
    東北大学
    東京大学
           (Univ. of Tokyo)
    早稲田大学(Waseda Univ.)
    名古屋大学(Nagoya Univ.)
    京都大学
            (Kyoto Univ.)
    広島大学
            (Hiroshima Univ.)
中国(China)
    中国科学院高能物理研究所(IHEF
韓国(Korea)
    ポハン加速器研究所(PAL)
   キョンプク大学(KNU)
```

インド(India)

Education of the Young Researchers at ATF

Raja Ramanna Centre for Advanced Technology

アメリカ(USA)

SLAC国立加速器研究所

/ear

ローレンス・バークレー国立研究所(LBNL)

ローレンス・リバモア国立研究所(LLNL)

フェルミ国立加速器研究所(FNAL)

ブルックヘブン国立研究所(BNL)

relatively independent R&D teams

Great Eastern Earthquake – March 11, 2011

well fixed blocks.

Facility Damages

Nobuhiro Terunuma (KEK)

Facility Outside Damages

Since there is a big earthquake in the northeast Japan, and it also has some influence on KEK and ATF. The ATF building still looks fine, but facility outside damages, and will be expected to recover in June.

Beams recovered in June ! → but ~9 month delay in ATF2 program...

Alignment of the ATF2 beamline

After the earthquake (surveyed in Sep.)
Aligned in October 2011

Floor of ATF2 sank about 1.5 mm.

2012/Jan S.Araki

DR displacement (Enlarged image)

2011/May: temporary alignment for a test beam 2011/Sep: first alignment

Results of the survey (magnets)

- A lot of magnets slid about several mm by earthquake.
- It was found that the distance between North to South section was 1.5 mm wider than the design. When??
- The design was updated by including the north to south difference and keeping the original circumference.
- DR was re-aligned by using this new design.

ATF2 operation & instrumentation R&D

Emittance Summary

EmityDREXT2011-12

Nano-meter Beam Position Monitors

Achieved resolution

@dymamic range $\pm 20 \mu m$

15.6 nm

Achieved resolution at ATF 8.72 +-0.28(stat) +-0.35(sys) nm

@ 0.7 × 10¹⁰ electrons/bunch,
 @ 5 µm dynamic range
 [Y. Inoue et al., Phys. Rev. ST-AB 11, 62801 (2008)]

Operational status of the ATF2 Cavity BPMs

C-band BPM

It is in the steady operation for ATF2.

Achieved Resolutions:

- 200 nm for typical BPMs with 20 dB attenuator to realize the wider dynamic range (~10 mm) for ATF2 tuning.
- 50 nm for BPMs w/o attenuator
- 27 nm was confirmed when BPMs are carefully tuned and a beam is well centered.

The Cavity BPM on ATF2 demonstrates well the target resolution of ILC, 100 nm.

S-band BPM

It needed only for the ATF2 large aperture final doublet. Not for ILC. Present resolution ~ 1 μ m

IP-BPMs

Trial installation: ~several 100 nm

Online Dispersion Monitoring

Nano-meter Beam Size Monitor

Beam Size Measurements at ATF2-IP

Univ. Tokyo / KEK

dump

- Solid (W,C) wire Scanners (meas. for 2um or more)
 - Laser interference fringe monitor (meas. for 20nm~6um)

FFTB ~70nm(measured) -> ATF2 37nm(goal)

Shintake Monitor : Layout

Shintake Monitor

Laser Interference Fringe Monitor for ATF2

Tuning the ATF2 vertical beam size

Laser Interference Fringe Monitor for ATF2

2-8° mode

Spend most beam time in 2010~2011.

- beam tuning down to 300 nm
- commissioning of the fringe monitor
- beam size ~ 300 nm

30° mode

First modulation was detected in February 2012.

• beam size ~165 nm

174° mode

Modulation is not yet detected.

• Need improvement on the split laser handling (crossing angle control) in summer.

Summer 2012 upgrades & partial redesign

Improvements on the fringe monitor

Damage \rightarrow laser spot size optimization vs

Compton Signal

pointing stabilization \rightarrow *BeamLok* device profile improvement \rightarrow laser cavity exchange

Laser crossing angle control

Beam halo and BSM background issues

Halo

Issue of magnet field quality

- Unfavorable low energy scaling → tolerances at ATF2 tighter compared to ILC or CLIC
- QD0 and several FFS quads have large anomalous skew sextupole
- QF1 has significant anomalous skew dodecapole
- Affects vertical beam size, especially for the reduced β^* regime relevant for CLIC FFS demonstration

Mitigation

- Operate ATF2 with increased horizontal β*
 presently 10 × β_x and 1 × β_y are used
- Replace QF1 with very good quality PEP II quadrupole (imminent)
- Additional knobs to control higher order aberrations using FFS normal sextupoles and four newly installed skew sextupoles
- Swap "bad" ↔ "good" FFS quads → too disruptive, not now...

Tolerances for Multipole Errors for Final Doublet

Tolerance of QF1FF Skew **Tolerance** (Nominal) 10^{0} Tolerance (Glen) Measurement (Amplitude) • 10⁻¹ Measurement (Skew) 10⁻² n3s / n2 10⁻³ 10⁻⁴ • 10⁻⁵ • . 10⁻⁶ 6pole 8pole Opole 12pole

Tolerance of QD0FF Skew

Red ; Nominal 2.5x1 Blue; Glen's 2.5x1

> emitx = 2nm emity = 12pm

with Y24 Y46 Y22 Y26 Y66 Y44 correction

Tolerances of Sextupole Field Errors for FF Quads

Tolerance for Nominal Optics (Normal Sextupole Field)

Tolerance for Nominal Optics (Skew Sextupole Field)

Red ; *Glen's* 2.5x1 *Blue*; *Nominal* 2.5x1

emitx = 2nm emity = 12pm

with Y24 Y46 Y22 Y26 Y66 Y44 correction

Nano-meter Beam Position Stabilization

Oxford / KNU / RHUL / KEK

One of the challenging goals for ATF2

1. achieving of the 37 nm vertical beam size

2. Stabilize a beam in a few nanometer level at the IP.

FONT1~FONT3 Analogue feedback system for very short bunch-train LCs.

Latency FONT3(ATF) 23 ns.

FONT4 & FONT5 (ATF2) Digital feedback system for long

bunch-train ILC.

allow the implementation of more sophisticated algorithms

Preparation for the nm-beam position stabilization IPBPM+FONT

FONT-kicker

Installed near the ATF2-IP. Tested in June 2012.

Full setup will be assembled at IP in early 2013.

IPBPM

400

IP

New vacuum chamber

Precise positioning of IPBPM triplet. Fabrication at LAL.

IPBPM

Triplet of the Low-Q cavity BPM. Fabricated by KNU. Sensitivity tested at ATF LINAC. Readout electronics tested at ATF2.

Beam

Recent progress towards "goal 2"

New IP chamber being built in Orsay to house 'Shintake' BSM and new set of lower Q high resolution cavity BPMS from KNU

• Expected to be installed early 2013

Meanwhile, new kicker installed near IP. Use existing higher Q IP-BPMs (with the vertical waist shifted) to investigate:

- Effect of the upstream FB system on IP stability (ultimate performance of upstream system)
- Feed-forward from upstream BPMs (eg P2 & P3) to the IP kicker
- Local FB correction (problem: no independent monitor of the FB performance on beam)

Check whether any significant jitter at IP originates from motion of final doublet

Concluding comments

- ATF/ATF2 unique as R&D facility, especially for instrumentations
- Invaluable training of early stage accelerator scientists on "real systems", in collaborative, flexible, yet competitive environment
- Extraordinary support provided by KEK and ATF staff as hosts
- Exemplary speed of recovery after major earthquake
- Excellent results on performance of new instruments and control methods, especially BPMs, profile monitors, feedback for "goal 2"
 - this is what our collaboration does best...
- Regular (but slower) progress toward "goal 1"
 - Focus reliably $\sigma y < 40$ nm, maintain over long time
 - Validate Raimondi-Seryi local chromaticity correction scheme is experimental tuning of such a system more problematic ?

premature to conclude at this stage...

Special "goal 1" challenge at ATF ?

1) **NEEDS** all components of the entire facility to operate reliably, and all at once \rightarrow not easy when key elements treated as projects for students who "learn by doing"

2) **NEEDS** stable & continuous centrally managed operation as for "luminosity" in facilities operated for users, not a succession of user defined independent R&D

- 3) **NEEDS** full community support and priority :
 - more joint publications
 - dedicated common funding sources
 - more coherent integration and management of collaborators

Prospect for coming runs

- Attempt to apply model of HEP experimental collaborations to organize "goal 1" dedicated continuous operation for N days (N>5)
- 12 "students" volunteered from R&D groups, trained as "operators"
- A senior KEK accelerator physicist (<u>K. Kubo</u>) has accepted to act as overall leader, to develop more central planning and coordination

Stay tuned for our progress at ATF/ATF2 in 2013 !

Thank you for your attention !

Additional slides

For Goal 2: Preliminary result of IPBPM

2011, i.e. 1shift/week and 8h/shift

Published resolution : 8.72 +- 0.28 (stat.) +- 0.35 (sys.) nm Y. Inoue et al, Phys. Rev. ST Accel. Beams 11, 062801 (2008)

Required precision on relative IP-BPM scale factors depends on beam parameters

 $\begin{array}{ll} \theta_{|P} = (y_2 - y_1) \ / \ d \\ y_{|P} = 2 \ y_2 - y_1 \end{array} \qquad \begin{array}{ll} \xi = \mbox{calibration error of 1 relative to 2} \\ \rightarrow & 2 \ y_2 - y_1 \end{array} \sim \begin{array}{l} y_{|P} + 2 \ \xi \ \theta \ d \end{array}$

 $\beta \sim 1 \text{ m}$ (e.g. diagnostic section)

 $\theta_{\text{jitter}} \sim (\epsilon / \beta)^{0.5} \text{ d} (\sigma_{\text{jitter}} / \sigma) \sim 10^{-7} \text{ rad } \Rightarrow \xi \sim 10^{-2} \text{ for 1 nm error}$

 $\beta \sim 10^{-4} \ 10^{-3} \ m$ (interaction point : nominal 10 x optics)

$$\theta_{\text{jitter}} \sim (\epsilon / \beta)^{0.5} \text{ d} (\sigma_{\text{jitter}} / \sigma) \sim 10^{-9} \text{ rad } \Rightarrow \xi \sim 10^{-4} \text{ for } 1 \text{ nm error}$$

 $\xi \sim 10^{-3} \text{ for } 10 \text{ nm error}$
 $\xi \sim 3 \ 10^{-3} \text{ for } 1 \text{ nm error}$

New IP Chamber

BPM displacement

